At atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot and the electron1density was1determined by the Stark1broadening method. The electron temperature ranged from 0.818 eV to 1.495 eV, and the electron density varied from 1.37 × 1018 cm−3 to 2.49 × 10 18 cm−3 at a magnetic coil with 350 turns. Subsequently, the electron temperature increased to a range of 1.029 eV–1.794 eV, and the electron density reached a range of 1.53 × 1018 cm−3 to 2.89 × 1018 cm−3 at a magnetic coil with 500 turns. It can be observed that the plasma properties exhibit a rise as the number of turns of the coil and the applied voltage increase. © 2023
Abstract
Through this study, I tried to identify the grammatical efforts of one of the most important authors of the footnotes that were built on the luminous benefits marked with (Explanation of Mulla Jami in Grammar), and he is Sheikh Isamah Allah Al-Bukhari, who died in the eleventh century AH, trying as much as possible to stay away from the path of tradition in repeating the efforts of Those who preceded me in explaining the grammatical efforts of many grammarians, and perhaps what helped me in this is the characteristics that characterize the notes owners that may distinguish them from other owners of grammatical authorship, as a result of what characterized the personality of the notes owners from the predominance of the in
... Show MoreThe research aims to identify the impact of the teaching methods Breathe test and imperative training method in learning some basic skills in Volleyball. The sample included 30 students of the first intermediate level from Al-Tawaia for boys / the public directorate of the education of Baghdad province – Al-Rasafa /2 ( The second). The samples are chosen randomly and divided into three groups : The systematic (Imperative method), first experimentary (training method), second experimentary (training method). Ten students are chosen for each group . The syllabus of the ministry of education is adopted on the systematic group while educational unites, which are prepared by the researcher, are used for the first and second experimenting group
... Show MoreBackground: Insufficient sleep due to excessive media use is linked to decrease physical activity, poor nutrition, obesity, and decreased overall health-related quality of life.
Objectives: To assess the effect of using the internet and social media on the sleep of 4th-stage secondary school students.
Subjects and Methods: Cross-sectional study with the analytic element; for 500 secondary school students, obtained by choosing two schools randomly from each of the six educational directorates, by using a structured questionnaire.
Result: Secondary scho
... Show MoreThe ZnO nanoparticles were synthesized at various precursor concentrations i.e. 0.05, 0.1, and 0.5 M by biosynthesis method based on Pometia pinnata Leaf Extracts. Initial nanoparticle concentration influenced the optical bandgap, shape, and structure of nanoparticles. The photodegradation process was carried out under UV illumination. The efficiency of MB degradation was determined by measuring the decrease in MB concentration and by analyzing the optical absorption at 663 nm recorded by UV-Vis spectroscopy. Results showed that the biosynthesized ZnO nanoparticles exhibited efficient photodegradation of MB, with a maximum degradation rate of 80% after 90 minutes of exposure to UV-C light. The study highlights the potential of Pometia pi
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The Aaliji Formation in wells (BH.52, BH.90, BH.138, and BH.188) in Bai Hassan Oil Field in Low Folded Zone northern Iraq has been studied to recognize the palaeoenvironment and sequence stratigraphic development. The formation is bounded unconformably with the underlain Shiranish Formation and the overlain Jaddala Formation. The microfacies analysis and the nature of accumulation of both planktonic and benthonic foraminifera indicate the two microfacies associations; where the first one represents deep shelf environment, which is responsible for the deposition of the Planktonic Foraminiferal Lime Wackestone Microfacies and Planktonic Foraminiferal Lime Packstone Microfacies, while the second association represents the deep-sea environme
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreThis study appears GIS techniqueand remote sensing data are matching with the field observation to identify the structural features such as fault segments in the urban area such as the Merawa and Shaqlawa Cities. The use of different types of data such as fault systems, drainage patterns (previously mapped), lineament, and lithological contacts with spatial resolution of 30m was combined through a process of integration and index overlay modeling technique for producing the susceptibility map of fault segments in the study area. GIS spatial overlay technique was used to determine the spatial relationships of all the criteria (factors) and subcriteria (classes) within layers (maps) to classify and map the potential ar
... Show MoreKnowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani
... Show More