The parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
This paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished
The research presents the reliability. It is defined as the probability of accomplishing any part of the system within a specified time and under the same circumstances. On the theoretical side, the reliability, the reliability function, and the cumulative function of failure are studied within the one-parameter Raleigh distribution. This research aims to discover many factors that are missed the reliability evaluation which causes constant interruptions of the machines in addition to the problems of data. The problem of the research is that there are many methods for estimating the reliability function but no one has suitable qualifications for most of these methods in the data such
The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show MoreIn this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based o
The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.
In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes
... Show MoreThe stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery
... Show More