LK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
Many neuroscience applications, including understanding the evolution of the brain, rely on neural cell instance segmentation, which seeks to integrate the identification and segmentation of neuronal cells in microscopic imagery. However, the task is complicated by cell adhesion, deformation, vague cell outlines, low-contrast cell protrusion structures, and background imperfections. On the other hand, existing segmentation approaches frequently produce inaccurate findings. As a result, an effective strategy for using the residual network with attention to segment cells is suggested in this paper. The segmentation mask of neural cells may be accurately predicted. This method is built on U-net, with EfficientNet serving as the e
... Show More In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm. The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.
Background: Skull secondary tumors are malignant bone tumors which are increasing in incidence.Objective: The objectives of this study were to present clinical features , asses the outcome of patients with secondary skull tumors ,characterize the MRI features, locations, and extent of secondary skull tumors to determine the frequency of the symptomatic disease.Type of the study: This is a prospective study.Methods: This is a prospective study from February 2000 to February 2008. The patients were selected from five neurosurgical centers and one oncology hospital in Baghdad/Iraq. The inclusion criteria were MRI study of the head(either as an initial radiological study or following head CT scan when secondary brain tumor is suspected , vis
... Show MoreThe emergence of staphylococci, either coagulase negative (CNS) or coagulase positive (CPS), as important human pathogens has implied that reliable methods for their identification are of large significance in understanding the diseases caused by them. The identification and characterization of staphylococci from biopsies taken from human breast tumors is reported here. Out of 32 tissue biopsies, a total of 12 suspected staphylococci grew on mannitol salt agar (MSA) medium, including 7 fermenters and 5 non-fermenter staphylococci based on traditional laboratory methods. Polymerase chain reaction (PCR) successfully identified seven isolates at the genus level as methicillin resistant St
... Show MoreThe petroleum sector has a significant influence on the development of multiphase detection sensor techniques; to separate the crude oil from water, the crude oil tank is used. In this paper, a measuring system using a simple and low cost two parallel plate capacitance sensor is designed and implemented based on a Micro controlled embedded system plus PC to automatically identify the (gas/oil) and (oil/water) dynamic multi-interface in the crude oil tank. The Permittivity differences of two-phase liquids are used to determine the interface of them by measuring the relative changes of the sensor’s capacitance when passes through the liquid’s interface. The experiment results to determine the liquid’s interface is sa
... Show MoreContours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.
Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show MoreMarking content with descriptive terms that depict the image content is called “tagging,” which is a well-known method to organize content for future navigation, filtering, or searching. Manually tagging video or image content is a time-consuming and expensive process. Accordingly, the tags supplied by humans are often noisy, incomplete, subjective, and inadequate. Automatic Image Tagging can spontaneously assign semantic keywords according to the visual information of images, thereby allowing images to be retrieved, organized, and managed by tag. This paper presents a survey and analysis of the state-of-the-art approaches for the automatic tagging of video and image data. The analysis in this paper covered the publications
... Show MoreIn this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.