The research problem arose from the researchers’ sense of the importance of Digital Intelligence (DI), as it is a basic requirement to help students engage in the digital world and be disciplined in using technology and digital techniques, as students’ ideas are sufficiently susceptible to influence at this stage in light of modern technology. The research aims to determine the level of DI among university students using Artificial Intelligence (AI) techniques. To verify this, the researchers built a measure of DI. The measure in its final form consisted of (24) items distributed among (8) main skills, and the validity and reliability of the tool were confirmed. It was applied to a sample of 139 male and female students who were chosen in a random stratified manner from students at the University of Baghdad, College of Education for Pure Sciences/Ibn Al-Haitham, Department of Computer. The proposed AI model utilized three artificial intelligence techniques: Decision Tree (DT), Random Forest (RF), and Gradient Boosting Machine (GBM). The classification accuracy using DT was 92.85 and using GMB was 95.23. The RF technique was applied to find the essential features, and the Pearson correlation was used to find the correlation between the features. The findings indicated that students indeed possess digital intelligence, underscoring the potential for tailored interventions to enhance their digital skills and competencies. This research not only sheds light on the current DI landscape among university students but also paves the way for targeted educational initiatives to foster digital literacy and proficiency in the academic setting.
The research studies the synthetic sculpture techniques in the outputs of the students of the department of art education in terms of the shape, texture, content and technique, and employing this style by the students of the department of art education on the college of fine arts, university of Diyala. The research consists of four chapters: the first chapter: the research problem summarized by looking for the synthetic sculpture and its importance in the treatment the industrial wastes in our social life, according to modern synthetic techniques, in the American and European sculpture. This technique has been employed in more than one contemporary artistic direction and style.
This study is considered important for the students of t
In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the
... Show MoreAbstract
The aim of the current research is to extract the psychometric properties of Philip Carter's tests (for mental agility) according to the classical measurement theory. To achieve these goals, the researcher took a number of scientific steps to analyze Philip Carter's tests (for mental agility) according to the classical measurement theory. The researcher translated Philip Carter's (mental agility) tests from English into Arabic and then he translated them conversely. For the purpose of statistical analysis of paragraphs of the Philip Carter tests (mental agility) to extract the psychometric properties, the tests were applied to a sample of (1000) male and female students who were selected by cluster sampl
... Show MoreArtificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreMany authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show More