The research problem arose from the researchers’ sense of the importance of Digital Intelligence (DI), as it is a basic requirement to help students engage in the digital world and be disciplined in using technology and digital techniques, as students’ ideas are sufficiently susceptible to influence at this stage in light of modern technology. The research aims to determine the level of DI among university students using Artificial Intelligence (AI) techniques. To verify this, the researchers built a measure of DI. The measure in its final form consisted of (24) items distributed among (8) main skills, and the validity and reliability of the tool were confirmed. It was applied to a sample of 139 male and female students who were chosen in a random stratified manner from students at the University of Baghdad, College of Education for Pure Sciences/Ibn Al-Haitham, Department of Computer. The proposed AI model utilized three artificial intelligence techniques: Decision Tree (DT), Random Forest (RF), and Gradient Boosting Machine (GBM). The classification accuracy using DT was 92.85 and using GMB was 95.23. The RF technique was applied to find the essential features, and the Pearson correlation was used to find the correlation between the features. The findings indicated that students indeed possess digital intelligence, underscoring the potential for tailored interventions to enhance their digital skills and competencies. This research not only sheds light on the current DI landscape among university students but also paves the way for targeted educational initiatives to foster digital literacy and proficiency in the academic setting.
Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show MoreKE Sharquie, HM Al-Hamamy, AA Noaimi, IA Al-Shawi, Journal of the Saudi Society of Dermatology & Dermatologic Surgery, 2011 - Cited by 9
The effect of electrolysis operating parameters on the removal efficiency of cadmium from a simulated wastewater was studied by adopting response surface methodology combined with Box–Behnken Design. As a new electrode design, spiral-wound woven wire mesh rotating cylinder electrode was used for cadmium removal. Current (240–400 mA), rotation speed (200–1000 rpm), initial cadmium concentration (200–600ppm), and cathode mesh number (30–60) were chosen as independent variables while the removal efficiency of cadmium was considered as a response function. The results revealed that the rotation speed has the major effect on the removal efficiency of cadmium. Regression analysis showed good fit of the experimental data to the second-or
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreExamining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant difference
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreNeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among
The current study aimed to standardize the multi-position suicidal tendency scale MAST in the Saudi environment as well as to assess suicidal tendencies in adolescents. Moreover, the study aimed to test the psychometric characteristics of the scale among a sample of (490) high school and undergraduate students, in the adolescence who ranging in age from (16-21) years. The scale demonstrated satisfactory internal consistency in terms of validity and reliability tests. as the results showed of exploratory factor analysis to the four dimensions of suicidal tendencies loading on two factors that accommodate 74.60% of the overall variance of the scale (1) the attitude toward life, and absorbs 43, 20% of the total variance of the scale,
... Show More