Preferred Language
Articles
/
JxegBY8BVTCNdQwCQVuy
PSEUDO RANDOM NUMBER GENERATOR BASED ON NEURO-FUZZY MODELS
...Show More Authors

Producing pseudo-random numbers (PRN) with high performance is one of the important issues that attract many researchers today. This paper suggests pseudo-random number generator models that integrate Hopfield Neural Network (HNN) with fuzzy logic system to improve the randomness of the Hopfield Pseudo-random generator. The fuzzy logic system has been introduced to control the update of HNN parameters. The proposed model is compared with three state-ofthe-art baselines the results analysis using National Institute of Standards and Technology (NIST) statistical test and ENT test shows that the projected model is statistically significant in comparison to the baselines and this demonstrates the competency of neuro-fuzzy based model to produce a pseudo-random number.

View Publication
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of the Stability of Some Commodity Activities in Iraq on the Estimation of the Statistical Data Models for the Period (1988-2000)
...Show More Authors

There is an assumption implicit but fundamental theory behind the decline by the time series used in the estimate, namely that the time series has a sleep feature Stationary or the language of Engle Gernger chains are integrated level zero, which indicated by I (0). It is well known, for example, tables of t-statistic is designed primarily to deal with the results of the regression that uses static strings. This assumption has been previously treated as an axiom the mid-seventies, where researchers are conducting studies of applied without taking into account the properties of time series used prior to the assessment, was to accept the results of these tests Bmanueh and delivery capabilities based on the applicability of the theo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Some Robust methods for Estimates the power Spectrum in ARMA Models Simulation Study
...Show More Authors

Abstract:

Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .

power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.

<

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
Limits between the Cosmological Parameters from Strong Lensing Observations for Generalized Isothermal Models
...Show More Authors

This paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time dela

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
The Use of Particle Swarm Algorithm to Solve Queuing Models with Practical Application
...Show More Authors

This paper includes the application of Queuing theory with of Particle swarm algorithm or is called (Intelligence swarm) to solve the problem of The queues and developed for General commission for taxes /branch Karkh center in the service stage of the Department of calculators composed of six  employees , and it was chosen queuing model is a single-service channel  M / M / 1 according to the nature of the circuit work mentioned above and it will be divided according to the letters system for each employee, and  it was composed of data collection times (arrival time , service time, departure time)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Wormholes Models for the Optimum Matrix Acidizing in Mi4 Unit-Ahdeb Oil Field
...Show More Authors

Innovative laboratory research and fluid breakthroughs have improved carbonate matrix stimulation technology in the recent decade. Since oil and gas wells are stimulated often to increase output and maximum recovery, this has resulted in matrix acidizing is a less costly alternative to hydraulic fracturing; therefore, it is widely employed because of its low cost and the fact that it may restore damaged wells to their previous productivity and give extra production capacity. Limestone acidizing in the Mishrif reservoir has never been investigated; hence research revealed fresh insights into this process. Many reports have stated that the Ahdeb oil field's Mishrif reservoir has been unable to be stimulated due to high inj

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Al-academy
Consistency and Consistency in Contemporary Iraqi Painting - Selected Models-: حسين شاكر قاسم العيداني
...Show More Authors

  The tagged research is concerned with observation and investigating the concepts of consistency and harmony in contemporary Iraqi painting (selected models) in order to reveal the mechanisms and rules of these two concepts in the artistic field and their mechanisms of operation. How reflected tools Consistency and harmony in contemporary Iraqi painting? What is consistency and what are its mechanisms and principles? Is consistency a unit product quality? Are there similarities between consistency and harmony? What is harmony and its principles and rules? As for the second chapter, it included two topics that dealt with the first topic - consistency and harmony between concept and significance, while the second topic meant - histor

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (1)
Scopus Crossref