Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amount of energy, especially during the training phase. The transmission of big data between service providers, users and data centres emits carbon dioxide as a result of high power consumption. This chapter proposes a theoretical framework for big data analytics using computational intelligent algorithms that has the potential to reduce energy consumption and enhance performance. We suggest that researchers should focus more attention on the issue of energy within big data analytics in relation to computational intelligent algorithms, before this becomes a widespread and urgent problem.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe objective of this article is to delve into the intricate dynamics of marriage relationships, exploring the impact of emotions such as fear, love, financial considerations and likability. In our investigation, we adopt a perspective that acknowledges the nonlinear nature of interactions among individuals. Diverging from certain prior studies, we propose that the fear element within the context of marriage is not a singular, isolated factor but rather a manifestation resulting from the amalgamation of numerous social issues. This, in turn, contributes to the emergence of strained and unsuccessful relationships. Unlike conventional approaches, we extensively examine the conditions essential for the existence of all socially signifi
... Show MoreAs a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven stand
... Show MoreThe research aims to reveal the impact of media policy in Iraqi media outlets on the level of objectivity in these outlets. A study from the communicators’ point of view where the researcher used a survey method on the communicators in media outlets to reveal the extent of media policies knowledge as well as the pressures exerted by this policy on communicators in media outlets. It also reveals the extent of their commitment to objectivity, neutrality in dealing with information and the way used to transfer it.
The research sample included (179) respondents from communicators in a range of Media outlets such as (Press, Radio, and Television), The researcher was careful with the diversity of the sample, and
Noor oil field is one of smallest fields in Missan province. Twelve well penetrates the Mishrif Formation in Noor field and eight of them were selected for this study. Mishrif formation is one of the most important reservoirs in Noor field and it consists of one anticline dome and bounded by the Khasib formation at the top and the Rumaila formation at the bottom. The reservoir was divided into eight units separated by isolated units according to partition taken by a rounding fields.
In this paper histograms frequency distribution of the porosity, permeability, and water saturation were plotted for MA unit of Mishrif formation in Noor field, and then transformed to the normal distribution by applying the Box-Cox transformation alg
... Show MoreThe study aims to indicate the role of the mechanisms and principles of corporate governance in the activation of social responsibility reports, and increase disclosure, to achieve sustainability, legitimacy, and integrity of the business. Through the presentation of the conceptual framework for corporate governance and social responsibility, identify the key dimensions of social responsibility and the statement of the relationship between the mechanisms of governance and social responsibility reports in accordance with these dimensions. To prove the hypothesis research has selected a sample of listed companies in the Iraqi market for securities,
... Show More