Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amount of energy, especially during the training phase. The transmission of big data between service providers, users and data centres emits carbon dioxide as a result of high power consumption. This chapter proposes a theoretical framework for big data analytics using computational intelligent algorithms that has the potential to reduce energy consumption and enhance performance. We suggest that researchers should focus more attention on the issue of energy within big data analytics in relation to computational intelligent algorithms, before this becomes a widespread and urgent problem.
The current study deals with host-guest complex formation between cucurbit [7] urils as host and lansoprazole as guesti using PM3 (semi empirical molecules orbital calculations) also DFT calculations. In this complex, the formation of hydrogen bonding may be occurred through portal oxygen atoms(O2) of cucurbit [7] urils and amine groups (NH 2 )of the drug. The energies of HOMO and LUMO orbital’s have been computed for the host guest complex and its components. The result of the stabilization energy explained a complex formation.
The concept of forming the living space in the American strategic thought has an
important position it is regarded as an strategic movement that it supports the American
United States with the huge capabilities in its own concern that enables it to approach of
American administration , we find that of different historical periods it works to establish that
the geopolitical dimension which is accompanied with the ability of American response for
the evens that in its own turn enables the American united states to seize the growing chances
in the global strategic environment This study includes five chapters :
- Chapter one: The idea of living space.
- Chapter two: Geopolitical dimension of living space theory.
-
Purpose: studying and analyzing the nature of uncertainty as part of strategy formulation, through analyzing the uncertainty faced by managers in the modern business environment characterized by high complexity and dynamism, though developing of an idea about the uncertainty cases and how enable the mind to understand these cases.
Methodology: It was the use of inductive and analytical approach, in order to study the accumulation of knowledge towards development areas that could contribute to strengthening the strategy formulation.
Findings: Mentoring the future will not make the success for business organization but thought business organization ability to developing share mental
... Show MoreCoronary heart disease (CHD) is the leading cause of death in United State (U.S.). Controlling of modifiable risk factors such as smoking, hypertension (HT), diabetes mellitus (D.M.), dyslipidemia, physical inactivity & obesity will prevent other serious cardiovascular complications
Concurrently with the technological development that the world is witnessing the crime of money laundering to evolve faster and with multiple methods and its economic, political and social impacts raised increasingly. And for phenomenon dangerous the international community in recent years is keen to be considered combating money laundering as a general indication whereby verification of the international response the stats and its banks and financial institutions with international requirements mandated in this aspect, so the increasing interest the governments of countries in the laws and procedures that contribute to the reduction of the phenomenon of money laundering and avoid legislation economy and the banking and financial sectors
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreThe research aims to determine what a photograph intends to convey as a visual text. Photographs are not captured randomly, especially those of politicians. Each photograph carries a message, even if interpretations of that message vary from person to person. The research adopts a methodology based on semiotic analysis, applying Laurent Gervero's model to analyze a photograph of the Iraqi Prime Minister Mustafa Al-Kadhimi's visit to Fallujah on the anniversary of the victory over ISIS. The photographs in question constitute a visual language built upon a sequence of iconic symbols and signs. These elements coalesce to give rise to an image centered around a particular theme, one designed to convey a precise messag
... Show MoreThe imbalances and economic problems which it face the countries, it is a result of international economic developments or changes or global crises such as deterioration in trade, sharp changes in oil prices, increasing global indebtedness, sharp changes in foreign exchange rates and other changes, all that, they affect the economic features of any country. and These influences vary from one country to another according to the rigidity of its economy and its potential in maneuvering with economic plans and actions that would reduce the impact or avoidance with minimal damage. Therefore, the countries that suffer from accumulated economic problems as a result of mismanagement and poor planning or suffe
... Show MoreFinding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show More