This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4048% for training and 95.8333% for testing.
The agent-based modeling is currently utilized extensively to analyze complex systems. It supported such growth, because it was able to convey distinct levels of interaction in a complex detailed environment. Meanwhile, agent-based models incline to be progressively complex. Thus, powerful modeling and simulation techniques are needed to address this rise in complexity. In recent years, a number of platforms for developing agent-based models have been developed. Actually, in most of the agents, often discrete representation of the environment, and one level of interaction are presented, where two or three are regarded hardly in various agent-based models. The key issue is that modellers work in these areas is not assisted by simulation plat
... Show MoreMedical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreAn anal fissure which does not heal with conservative measures as sits baths and laxatives is a chronic anal fissure. Physiologically, it is the high resting tone of the internal anal sphincter that chiefly interferes with the healing process of these fissures. Until now, the gold standard treatment modality is surgery, either digital anal dilatation or lateral sphincterotomy. However, concerns have been raised about the incidence of faecal incontinence after surgery. Therefore, pharmacological means to treat chronic anal fissures have been explored.A Medline and pub med database search from 1986-2012 was conducted to perform a literature search for articles relating to the non-surgical treatment of chronic anal fissure.Pharmacological s
... Show MoreAn anal fissure which does not heal with conservative measures as sits baths and laxatives is a chronic anal fissure. Physiologically, it is the high resting tone of the internal anal sphincter that chiefly interferes with the healing process of these fissures. Until now, the gold standard treatment modality is surgery, either digital anal dilatation or lateral sphincterotomy. However, concerns have been raised about the incidence of faecal incontinence after surgery. Therefore, pharmacological means to treat chronic anal fissures have been explored.A Medline and pub med database search from 1986-2012 was conducted to perform a literature search for articles relating to the non-surgical treatment of chronic anal fissure.Pharmacological s
... Show MoreThis paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma
... Show MoreObjective(s): To determine the impact of the electronic Health Information Systems upon medical, medical Backing and administrativedecisions in Al-Kindy Teaching Hospital. Methodology: A descriptive analytical design is employed through the period of June 14th 2015 to August 15th 2015. A purposive "non- probability" sample of (50) subject is selected. The sample is comprised of (25) medical and medical backing staff and (25) administrative staff who are all involved in the process of decision making in Al-Kindy Teaching Hospital. A self-report questionnaire, of (68) item, is adopted and developed for the purpo
This research investigates the adsorption isotherm and adsorption kinetics of nitrogen from air using packed bed of Li-LSX zeolite to get medical oxygen. Experiments were carried out to estimate the produced oxygen purity under different operating conditions: input pressure of 0.5 – 2.5 bar, feed flow rate of air of 2 – 10 L.min-1 and packing height of 9-16 cm. The adsorption isotherm was studied at the best conditions of input pressure of 2.5 bar, the height of packing 16 cm, and flow rate 6 Lmin-1 at ambient temperature, at these conditions the highest purity of oxygen by this system 73.15 vol % of outlet gas was produced. Langmuir isotherm was the best models representing the experimental data., and the m
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show More