Recently, a new secure steganography algorithm has been proposed, namely, the secure Block Permutation Image Steganography (BPIS) algorithm. The new algorithm consists of five main steps, these are: convert the secret message to a binary sequence, divide the binary sequence into blocks, permute each block using a key-based randomly generated permutation, concatenate the permuted blocks forming a permuted binary sequence, and then utilize a plane-based Least-Significant-Bit (LSB) approach to embed the permuted binary sequence into BMP image file format. The performance of algorithm was given a preliminary evaluation through estimating the PSNR (Peak Signal-to-Noise Ratio) of the stego image for limited number of experiments comprised hiding text files of various sizes into BMP images. This paper presents a deeper algorithm performance evaluation; in particular, it evaluates the effects of length of permutation and occupation ratio on stego image quality and steganography processing time. Furthermore, it evaluates the algorithm performance for concealing different types of secret media, such as MS office file formats, image files, PDF files, executable files, and compressed files.
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreUsing watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they a
... Show MoreA coin has two sides. Steganography although conceals the existence of a message but is not completely secure. It is not meant to supersede cryptography but to supplement it. The main goal of this method is to minimize the number of LSBs that are changed when substituting them with the bits of characters in the secret message. This will lead to decrease the distortion (noise) that is occurred in the pixels of the stego-image and as a result increase the immunity of the stego-image against the visual attack. The experiment shows that the proposed method gives good enhancement to the steganoraphy technique and there is no difference between the cover-image and the stego-image that can be seen by the human vision system (HVS), so this method c
... Show MoreIn this paper, method of steganography in Audio is introduced for hiding secret data in audio media file (WAV). Hiding in audio becomes a challenging discipline, since the Human Auditory System is extremely sensitive. The proposed method is to embed the secret text message in frequency domain of audio file. The proposed method contained two stages: the first embedding phase and the second extraction phase. In embedding phase the audio file transformed from time domain to frequency domain using 1-level linear wavelet decomposition technique and only high frequency is used for hiding secreted message. The text message encrypted using Data Encryption Standard (DES) algorithm. Finally; the Least Significant bit (LSB) algorithm used to hide secr
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that