This study investigates the constructs and related theories that drive social capital in energy sector from the intention perspectives. This research uses theories of 'social support' and 'planned behaviour' alongside satisfaction and perceived value to propose a research model that drives social capital for energy sectors in Malaysia. The model reveals that the Theories of Planned Behaviour (TPB) and Social Support Theory (SST) alongside satisfaction and perceived value factors promote social capital development in energy sectors. Using PLS-SEM to analyse data gathered from energy sector employees in Malaysia, this research demonstrates that social capital is present when there is trust and loyalty among the users and positively effects energy sectors in terms of the productivity, effectiveness, efficiency and profitability. The study also contributes to the understanding of individuals' use of social capital in energy sector. A survey is adapted and distributed to 100 respondents as a mean to study on the validity and reliability of the research factors. Results indicate that all seven hypotheses proposed significantly influence social capital
This study focused on extracting the outer membrane nanovesicles (OMVs) from Escherichia coli BE2 (EC- OMVs) by ultracentrifugation, and the yield was 2.3mg/ml. This was followed by purification with gel filtration chromatography using Sephadex G-150, which was 2mg/ml. The morphology and size of purified EC-OMVs were confirmed by transmission electron microscopy (TEM) at 40-200 nm. The nature of functional groups in the vesicle vesicle was determined by Fourier transforms infrared spectroscopy (FT-IR) analysis. The antitumor activity of EC-OMVs was conducted in vitro by MTT assay in human ovarian (OV33) cancer cell line at 24,48 and 96hrs. The cytotoxicity test showed high susceptibility to the vesicles in ovarian compared to normal
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreAbstract:
The current research aims to demonstrate the relationship of correlation and influence between the independent variable strategic control through its dimensions represented by (organizational structure, human resources management, commitment to specialization, defining powers and responsibilities, values and integrity) and the dependent variable the performance of the insurance company, and the degree of arrangement of these dimensions according to their importance, as well as Detection of significant differences in the sample's response to the questionnaire paragraphs in the researched company, and the research problem
... Show MoreIn this work, the impact of different geomagnetic storm events on the plasma-sphere layer (ionosphere layer) over the northern and southern hemisphere regions was investigated during solar cycle 23. To grasp the influence of geomagnetic storms on the behavior and variation of the critical frequency parameter of the F2 ionospheric layer (foF2), five geomagnetic storms (classified as great, severe, and strong), with Disturbance storm time (Dst) values <-100 nT were chosen. Four stations located in different mid-latitude regions in northern and southern hemispheres were designated, the northern stations are: Millstone Hill (42.6° N, 288.50° W) and Rome (41.90° N, 12.50° E) and the southern stations are: Port Stanley (-51.60° S,
... Show MoreIn this work, the design and implementation of a smart energy metering system has been developed. This system consists of two parts: billing center and a set of distributed smart energy meters. The function of smart energy meter is measuring and calculating the cost of consumed energy according to a multi-tariff scheme. This can be effectively solving the problem of stressing the electrical grid and rising consumer awareness. Moreover, smart energy meter decreases technical losses by improving power factor. The function of the billing center is to issue a consumer bill and contributes in locating the irregularities on the electrical grid (non-technical losses). Moreover, it sends the switch off command in case of the consumer bill is not
... Show MoreThe thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decr
... Show MoreConsider the (p,q) simple connected graph . The sum absolute values of the spectrum of quotient matrix of a graph make up the graph's quotient energy. The objective of this study is to examine the quotient energy of identity graphs and zero-divisor graphs of commutative rings using group theory, graph theory, and applications. In this study, the identity graphs derived from the group and a few classes of zero-divisor graphs of the commutative ring R are examined.