Preferred Language
Articles
/
JhbgQIcBVTCNdQwCKT6P
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
2021 Ieee/cvf Conference On Computer Vision And Pattern Recognition Workshops (cvprw)
Scopus (9)
Crossref (11)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

Scopus (42)
Crossref (32)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Medical Image Classification for Coronavirus Disease (COVID-19) Using Convolutional Neural Networks

     The coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw

... Show More
Scopus (15)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Applied Soft Computing
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Feb 04 2022
Journal Name
Iraqi Journal Of Science
AHeuristic Strategy for Improving the Performance of Evolutionary Based Complex Detection in Protein-Protein Interaction Networks

One of the most interested problems that recently attracts many research investigations in Protein-protein interactions (PPI) networks is complex detection problem. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms (EAs) reveals positive results. The contribution of this work is to introduce a heuristic operator, called protein-complex attraction and repulsion, which is especially tailored for the complex detection problem and to enable the EA to improve its detection ability. The proposed heuristic operator is designed to fine-grain the structure of a complex by dividing it into two more complexes, each being distinguished with a core pr

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Swarm And Evolutionary Computation
Scopus (31)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
Scopus (20)
Crossref (9)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
Scopus (10)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 19 2012
Journal Name
Wireless Personal Communications
Scopus (33)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)