In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
This study aims to know the relationship between the birth order and lifestyles among a sample of adolescent students. The sample of the study consisted of (200) students selected from the governmental schools in the Directorate of Education of Qabatiya, in the second semester of the academic year 2020/2021. The results of the study have revealed that the most common lifestyles among the sample of the study are represented by: (the belonging) style, (the submissive) style, (the avenger) style, (the pampered) style, respectively. The study has also found that there are statistically significant differences in the lifestyles of: (the victim, the domineering, the avenger, and the harmful) which are ascribed to the gender variable. Mor
... Show MoreThe authors introduced and addressed several new subclasses of the family of meromorphically multivalent -star-like functions in the punctured unit disk in this study, which makes use of several higher order -derivatives. Many fascinating properties and characteristics are extracted systematically for each of these newly identified function classes. Distortion theorems and radius problems are among these characteristics and functions. A number of coefficient inequalities for functions belonging to the subclasses are studied, and discussed, as well as a suitable condition for them is set. The numerous results are presented in this study and the previous works on this
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreDates are considered one of the most important foods consumed in Arab countries. Dates are commonly infested with the sawtoothed grain beetle, Oryzaephilus surinamensis. Consequently, the date yield, quantity, and quality (economic value and seed viability) are negatively affected. This study was designed to investigate the effectiveness of air evacuation as eco-friendly and safe control method against adult O. surinamensis. Insects were obtained from the infested date purchased from a private store in sakaka city, Aljouf region, Saudi Arabia. Air evacuation (using a vacuum pump) and food deprivation were applied to O. surinamensis, and insect mortality was observed daily in comparison with the control group (a
... Show MoreOur goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz
In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.
In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.
The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations