With the fast-growing of neural machine translation (NMT), there is still a lack of insight into the performance of these models on semantically and culturally rich texts, especially between linguistically distant languages like Arabic and English. In this paper, we investigate the performance of two state-of-the-art AI translation systems (ChatGPT, DeepSeek) when translating Arabic texts to English in three different genres: journalistic, literary, and technical. The study utilizes a mixed-method evaluation methodology based on a balanced corpus of 60 Arabic source texts from the three genres. Objective measures, including BLEU and TER, and subjective evaluations from human translators were employed to determine the semantic, contextual and cultural quality. Our results show that our model, ChatGPT, consistently achieves performance gains over DeepSeek, especially when applied to technical and journalistic text and with higher BLEU scores and lower TER values. But neither these models nor any of the state-of-the-art models perform well for the literary texts, the ones that can hint to the difficulties these models face to deal with idiomatic expressions, metaphor, narrative tone. The results illustrate genre sensitivity in AI translation quality and emphasize the ongoing importance of human supervision, particularly in cultural and stylistic contexts. This work aims to contribute to the growing corpus of AI translation literature by providing a genrespecific, empirically grounded comparison of two of the most highprofile models, and to draw attention to the necessity of greater context-sensitive and culturally sensitive translation algorithms.
Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreThe study aims to build a model that revolves around the main question of the role of strategic agility (SA) in enhancing organizational excellence (OE). For the purpose of achieving OE and to determine the extent of interest and knowledge of managers at the Midwest Refineries Company (MRC) on the theoretical and practical implications, and on the performance foundations of these two vital variables with the aim of continuous improvement. A questionnaire was used and distributed to a random sample of 54 managers in this important energy production company. The study followed the descriptive analytical approach to answer the questions raised. The study model and dimensions were built according to reference models, most notably the mo
... Show Morehe study aims to build a model that revolves around the main question of the role of strategic agility (SA) in enhancing organizational excellence (OE). For the purpose of achieving OE and to determine the extent of interest and knowledge of managers at the Midwest Refineries Company (MRC) on the theoretical and practical implications, and on the performance foundations of these two vital variables with the aim of continuous improvement. A questionnaire was used and distributed to a random sample of 54 managers in this important energy production company. The study followed the descriptive analytical approach to answer the questions raised. The study model and dimensions were built according to reference models, most notably the models (Al-
... Show MoreScientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreLung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio
... Show MoreBased economic units to technology to add innovations that lead to contribute to customer satisfaction, under intense competition and rapid development in customer taste, the economic units tend to apply the concepts that contribute to customer satisfaction led by the introduction of artificial intelligence techniques. In the production prominent role in the contributing and responding to the rapid changes in customer tastes, and consequent impact this in achieving customer satisfaction. Search gained importance of relying on artificial intelligence techniques to achieve customer satisfaction through speed of response to changes in the tastes of customers and thus be able to increase its market share، and sales growth، and to achieve a
... Show MoreIn spite of the disappearing of a clear uniform textbook for teaching ESP at different departments and different colleges in both scientific and humanistic studies, the practitioners at those departments and colleges have to teach translation as one of the important requirements to pass the English language exam. The lack of defined translation activities is a noticeable problem therefore; the problem of teaching translation is diagnosed in that the students lack the ability to comprehend the text in English language and other translation knowledge and skills.
The study aims to suggest a translation strategy and then find out the effect of the translation strategy on ESP learners’ achievement in translation. A sample of 50 stud
... Show More