With the fast-growing of neural machine translation (NMT), there is still a lack of insight into the performance of these models on semantically and culturally rich texts, especially between linguistically distant languages like Arabic and English. In this paper, we investigate the performance of two state-of-the-art AI translation systems (ChatGPT, DeepSeek) when translating Arabic texts to English in three different genres: journalistic, literary, and technical. The study utilizes a mixed-method evaluation methodology based on a balanced corpus of 60 Arabic source texts from the three genres. Objective measures, including BLEU and TER, and subjective evaluations from human translators were employed to determine the semantic, contextual and cultural quality. Our results show that our model, ChatGPT, consistently achieves performance gains over DeepSeek, especially when applied to technical and journalistic text and with higher BLEU scores and lower TER values. But neither these models nor any of the state-of-the-art models perform well for the literary texts, the ones that can hint to the difficulties these models face to deal with idiomatic expressions, metaphor, narrative tone. The results illustrate genre sensitivity in AI translation quality and emphasize the ongoing importance of human supervision, particularly in cultural and stylistic contexts. This work aims to contribute to the growing corpus of AI translation literature by providing a genrespecific, empirically grounded comparison of two of the most highprofile models, and to draw attention to the necessity of greater context-sensitive and culturally sensitive translation algorithms.
Background: With the increase in composite material use in posterior teeth, the concerns about the polymerization shrinkage has increased with the concerns about the formation of marginal gaps in the oral cavity environment. New generation of adhesives called universal adhesive have been introduced to the market in order to reduce the technique sensitive bonding procedures to give the advantage of using the bonding system in any etching protocol without compromising the bonding strength. The aim of the study was to study marginal adaptation of two universal adhesives (Single bondâ„¢ Universal and Prime and Bond elect) using 3 etching techniques under thermal cycling aging. Materials and Methods: Forty-eight sound maxillary first premola
... Show MoreThe news media material to any means of mass media, and increasingly
important in TV; what the associated word and image effects, which do different cover events (political, economic, sports, and social .... etc.) directly from the event site and gather the news and do prepared formulation and arranged within the framework provided by the newsletter, as it requires the viewer to provide the public with information about this news correlated; to achieve the greatest gravity following the shapes and styles and technical fees (Alkraveks) during the submission. What we are witnessing today from technological developments help existing staff to cover the news activity quickly and efficiently prohibitivel
... Show MoreThe study aims to identify the relationship between forgiveness and social intelligence among elementary school students. The study employed a descriptive analytical approach, whereby a total of (500) elementary school student were selected randomly regarding the variable of gender and economical status. Two scales were prepared: one to measure the forgiveness depending on Albort’s theory that consist of (20) item, and the other to measure the social intelligence according to Tony’s theory which composed of (20) item as well. The result revealed that 6th grade students have interested level of the forgiveness and social intelligence, the girl showed significant differences according to the forgiveness variable, the sample
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show Morethe traumatic memory of their ancestors. The novel navigates sites of trauma, memory, and blues music while resisting the bourgeoisie-capitalist relationships that permeated not only white society but also African American communities. Jones’s novel presents the plight of an African American woman, Ursa, caught between the memory of her enslaved foremothers and her life in an emancipated world. The physical and spiritual exploitation of African American women who bear witness to the history of slavery in Corregidora materializes black women’s individuality. This article is framed by trauma studies as well as the Marxists’ concepts of commodification, accumulation, and production. Ursa, one of the Corregidora women, represents
... Show MoreInternet of Things (IoT) is a recent technology paradigm that creates a global network of machines and devices that are capable of communicating with each other. Security cameras, sensors, vehicles, buildings, and software are examples of devices that can exchange data between each other. IoT is recognized as one of the most important areas of future technologies and is gaining vast recognition in a wide range of applications and fields related to smart homes and cities, military, education, hospitals, homeland security systems, transportation and autonomous connected cars, agriculture, intelligent shopping systems, and other modern technologies. This book explores the most important IoT automated and smart applications to help the reader u
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreMany researchers consider Homogeneous Charge Compression Ignition (HCCI) engine mode as a promising alternative to combustion in Spark Ignition and Compression Ignition Engines. The HCCI engine runs on lean mixtures of fuel and air, and the combustion is produced from the fuel autoignition instead of ignited by a spark. This combustion mode was investigated in this paper. A variable compression ratio, spark ignition engine type TD110 was used in the experiments. The tested fuel was Iraqi conventional gasoline (ON=82).
The results showed that HCCI engine can run in very lean equivalence ratios. The brake specific fuel consumption was reduced about 28% compared with a spark ignition engine. The experimental tests showed that the em
... Show More