This study aimed to evaluate the reservoir petrophysical properties (porosity, water saturation, and permeability) for optimal flow unit assessment within the Sadi Formation. Utilizing open hole logging data from five wells, the Sadi formation was divided into two rock units. The upper unit (A) is 45-50 meters thick, mainly consisting of limestone, mainly consisting of shaly limestone at the lower part. The lower unit (B) has a thickness of approximately 75-80 meters and is primarily composed of limestone, further subdivided into three subunits (B1, B2, B3). The average water resistivity is 0.04 ohm-m, and the average mud filtrate resistivity is 0.06 ohm-m. The Pickett plot was utilized to determine Archie parameters (tortuosity factor=1, cementation factor= 2, saturation exponent = 1.94). Petrophysical properties were determined through a sequence of operations involving lithology identification, shale volume estimation, porosity calculation, water saturation calculation, and permeability estimation. Lithology was identified using neutron, density and sonic logs with (N-D, M-N) cross plots, which show that the Sadi Formation is mainly limestone. The Gamma ray log was employed to estimate the shale volume of the Sadi Formation using the Larionov equation of old rock, resulting in a shale volume of 7%-58%. After calculating porosity using neutron-density logs, the resulting porosity matched the core porosity. Archie equation was used to calculate the formation’s water saturation, with water saturation less than 0.48 (cut-off) obtained in B1, B2 and B3 units. Finally, the formation permeability was estimated using the Flow Zone Indicator method, which provided a good match with core permeability. Porosity and water saturation were estimated with depth using Techlog software. The best hydrocarbon-holding unit is B2, which has the highest porosity, lowest water saturation, and the best permeability, with a thickness of 20.1 meters. As a result of this study, core plug analysis and well logging data identified eight distinct units in the Sadi Formation. There are three flow sub-units in upper Sadi (B1), three flow sub-units in Sadi (B2) and two sub-units in Sadi (B3). Additionally, it has been found that the marl rock unit (A2) separates the water-bearing zone (A1) from the oil-bearing zone (B).
Some major pollutants of polycyclic aromatic hydrocarbons (PAH) those discharged as water produced (WP) from the AlAhdab oil field (AOF) in the ponds close to it may leak to the water resources around and eventually reaches the marshes which will affect its ecosystem. Thus, this work aims to track the availability of PAH in the water resources and the Main Outfall Drain (MOD) nearby. The determination of PAH was evaluated using “High-Performance Liquid Chromatography (HPLC)”. The mean concentration of sixteen PAH in the produced water within the field was relatively high (0.01 to 10.89 g/ml) with standard deviations of (0.10.9). While, PAH outside the field were gradually diminishes down to (0.01-0.039) x10-2 g/ml which exceeds th
... Show MoreThe Late Cretaceous-Early Paleocene Shiranish and Aliji formations have been studied in three selected wells in Jambur Oil Field (Ja-50, Ja-53, and Ja-67) in Kirkuk, Northeastern Iraq. This study included lithostratigraphy and biostratigraphy. The Late Campanian-Maastrichtian Shiranish Formation consist mainly of thin marly and chalky limestone beds overlain by thin marl beds, with some beds of marly limestone representing an outer shelf basinal environment, the unconformable contact with the above Middle Paleocene-Early Eocene Aliji Formation contain layers of limestone with marly limestone and chalky limestone which represents an outer shelf basinal environment. Five Biozones in the Shiranish Formation were determined which are: 1
... Show MoreExposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreGas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in
Reservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti
... Show MoreStatic reservoir modeling is the interacting and analysis of the geological data to visualize the reservoir framework by three-dimensional model and distribute the static reservoir properties. The Petrel E&P software used to incorporate the data. The interpreted log data and core report used in distribution of petrophysical properties of porosity, water saturation and permeability for Zubair reservoir in Luhais oil field.
The reservoir discretized to 274968 cells in increments of 300, 200 and 1 meter in the direction of X, Y, and Z respectively. The geostatistical approach used in the distribution of the properties of porosity and water saturation overall the reservoir units. The permeability has been calculated
... Show MoreThe emergence of oil fields and subsequent changes in adjacent land use are known to affect settlements and communities. Everywhere the industry emerges, there is little understanding about the impact of oil fields on land use in the surrounding areas. The oil industry in Iraq is one of the most important industries and is almost the main industry in the Iraqi economic sector, and it is very clear that this industry is spread over large areas, and at the same time adjoins with population communities linked to it developmentally.
The rapid development and expansion of oil extraction activities in various regions has led to many challenges related to land-use planning and management. Here, the problem of research arises on th
... Show MoreSimple, sensitive and economical spectrophotometric methods have been developed for the determination of cefixime in pure form. This method is based on the reaction of cefixime as n-electron donor with chloranil to give highly colored complex in ethanol which is absorb maximally at 550 nm. Beer's law is obeyed in the concentration ranges 5-250 µg ml-1 with high apparent molar absorptivities of 1.52×103 L.mole-1. cm-1.