A simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration in the range of 2.0-10 µmol/L with a limit of detection 0.35 µmol/L, 0.9981 (R2), and 2.0-12 µmol/L with a limit of detection 0.4 µmol/L and 0.9973 (R2) for measuring cells 1 and 2, respectively. The intra-day precision for three serial estimations of 5.0 and 9.0 µmol/L of MBH exhibited an RSD % of 0.23 % and 0.77 % and 0.68 % and 0.13 %, for cell 1 & 2, respectively. While the inter-day precision for three serials of three days exhibited an RSD % of 0.03 % and 0.77 % and 0.11 % and 0.07 %, for measuring cells 1 & 2, respectively. The accuracy of the developed method has expressed as an error % (E%) and a Rec % (recovery percentage), which was between 100.35 to 101.15 and 99.70 to 101.56 for cell 1 and cell 2, respectively. The present flow injection method has shown no interference effect from the common excipients and permits quantitively determination of 60 samples per hour. The developed method was successfully applied for the quantitative determination of MBH in different tablets containing 135 mg with excellent recovery percentage.
One of the most important challenges facing the designers of the sewerage system is the corrosion of sewers due to the influence of sewerage contaminates which lead to failure of the main lines of sewers. In this study, a reference mix of 1: 1.5: 3 was used and the 4% Flocrete PC200 by weight of cement was added to the same mixing ratio in the second mixture. Twenty-four samples were tested for each mixture, 12 of which were used to compression strength test in ages (7, 14 and 28) day and six samples were submerged after 28 days of wet treatment at (5 and 10) % concentrations of sulfuric acid. The other six samples were painted after 28 days of wet treatment with coating Polyurethane and after 24 hours were flooded with a concentrat
... Show MoreUranium concentrations in soil were determined for ten locations in Salahdin governorate using CR-39 track detector, fission fragments track technique was used, the nuclear reaction of nuclear fission fragments obtained by the bombardment of 235U with thermal neutrons from (Am-Be) neutron source with flux (5000n.cm-2.s-1), the concentration values were calculated by a comparison with standard samples. The results of the measurements show that the uranium concentration in soil samples various from 0.42±0.018ppm in Beji province to 0.2±0.014 ppm in Tooz province with an average (0.31±0.08ppm), the values of uranium concentration in all samples are within the permissible limits universally.
The aim of this study was to investigate antibiotic amoxicillin removal from synthetic pharmaceutical wastewater. Titanium dioxide (TiO2) was used in photocatalysis treatment method under natural solar irradiation in a tubular reactor. The photocatalytic removal efficiency was evaluated by the reduction in amoxicillin concentration. The effects of antibiotics concentration, TiO2 dose, irradiation time and the effect of pH were studied. The optimum conditions were found to be irradiation time 5 hr, catalyst dosage 0.6 g/L, flow rate 1 L/min and pH 5. The photocatalytic treatment was able to destruct the amoxicillin in 5 hr and induced an amoxicillin reduction of about 10% with 141.8 kJ/L accumulate
... Show MoreIn this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in
... Show MoreZnS nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM). The particle size is determined by field effect scanning electron microscopy (FESEM), UV-Visible absorption spectroscopy and XRD. UV-Visible absorption spectroscopy analysis shows that the absorption peak of the as-prep
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati