A simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration in the range of 2.0-10 µmol/L with a limit of detection 0.35 µmol/L, 0.9981 (R2), and 2.0-12 µmol/L with a limit of detection 0.4 µmol/L and 0.9973 (R2) for measuring cells 1 and 2, respectively. The intra-day precision for three serial estimations of 5.0 and 9.0 µmol/L of MBH exhibited an RSD % of 0.23 % and 0.77 % and 0.68 % and 0.13 %, for cell 1 & 2, respectively. While the inter-day precision for three serials of three days exhibited an RSD % of 0.03 % and 0.77 % and 0.11 % and 0.07 %, for measuring cells 1 & 2, respectively. The accuracy of the developed method has expressed as an error % (E%) and a Rec % (recovery percentage), which was between 100.35 to 101.15 and 99.70 to 101.56 for cell 1 and cell 2, respectively. The present flow injection method has shown no interference effect from the common excipients and permits quantitively determination of 60 samples per hour. The developed method was successfully applied for the quantitative determination of MBH in different tablets containing 135 mg with excellent recovery percentage.
The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThe aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreGeotechnical engineering like any other engineering field has to develop and cope with new technologies. This article intends to investigate the spatial relationships between soil’s liquid limit (LL), plasticity index (PI) and Liquidity index (LI) for particular zones of Sulaymaniyah City. The main objective is to study the ability to produce digital soil maps for the study area and determine regions of high expansive soil. Inverse Distance Weighting (IDW) interpolation tool within the GIS (Geographic Information System) program was used to produce the maps. Data from 592 boreholes for LL and PI and 245 boreholes for LI were used for this study. Layers were allocated into three depth ranges (1 to 2, 2 to 4 and 4 to 6)
... Show MoreThe density functional B3LYP is used to investigate the effect of decorating the silver (Ag) atom on the sensing capability of an AlN nanotube (AlN-NT) in detecting thiophosgene (TP). There is a weak interaction between the pristine AlN-NT and TP with the sensing response (SR) of approximately 9.4. Decoration of the Ag atom into the structure of AlN-NT causes the adsorption energy of TP to decrease from − 6.2 to − 22.5 kcal/mol. Also, the corresponding SR increases significantly to 100.5. Moreover, the recovery time when TP is desorbed from the surface of the Ag-decorated AlN-NT (Ag@AlN-NT) is short, i.e., 24.9 s. The results show that Ag@AlN-NT can selectively detect TP among other gases, such as N2, O2, CO2, CO, and H2O.
An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreDesigning and Standardizing two tests for motor coordination timing for youth basketball players Research submitted by Prof. Faris sami & asst. prof. Wasan hanoon ali & asst. prof. Feras muttasher Baghdad University-College Of Physical Education and Sport Sciences Motor coordination in basketball is considered one of the most important factors for success in skill performance accuracy and speed due to the defensive and offensive situations of the game. The problem of the research lies in the lack of tests that can specify the growth of motor coordination through which the relative change for a number of players can be noticed due to practice and training. The subjects of the research were (30) young league players of National Center for gif
... Show MoreThe most important issue that 21-century in knowledge organization try successfully to face and solve is the determination of the ways and the processes through which they can measure and assess the intellectual capital (IC). In spite of the importance of the human capital in the knowledge organization, The accounting as an information systems, does not give a great deal of consideration to the human capital, and does not treat investment in it as an original factor, but it shows it on the base of salaries and payrolls that is appears in the financial statements as a revenue expenditure. As a result of that the financial statement are not a true expression of the actual status and then some of the decisions taken under the present circum
... Show More