A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results show that the proposed system has obtained good results and these results are equal to 86.36%, 49.69%, and 77.65% for detection rate, false alarm rate and accuracy respectively. These results are considered as a better result when it is compared with the other previous basic algorithms. It is possible to conclude that DNA sequence has potential for NIDS solution and it has potential improvement using a better encoding method.
Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreThe university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a
... Show MoreAmong the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS
... Show MoreNeurolinguistics is a new science, which studies the close relationship between language and neuroscience, and this new interdisciplinary field confirms the functional integration between language and the nervous system, that is, the movement of linguistic information in the brain in receiving, acquiring and producing to achieve linguistic communication; Because language is in fact a mental process that takes place only through the nervous system, and this research shows the benefit of each of these two fields to the other, and this science includes important topics, including: language acquisition, the linguistic abilities of the two hemispheres of the brain, the linguistic responsibility of the brain centers, and the time limit for langua
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show More
