It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
The foreign policy of china is considered an important subject generally, in addition its very significant towards the Middle East specifically. It is the most valued topic, that needs deep academic investigations in order to identify the important factors causes and its consequences, this kind of research provides a proper understanding to the researchers and politicians, it will prove the reasons for China's with the impact to the region, the rivalry with the United States in the coming years
Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno
The research explain the analysis of finance investments through analyze the finance tables for commercial banks, by using the pointers to indicate the limits of economical benefit for these investments, and fix the negative deviations and as well positive, for the purpose of diagnostic the negative (disadvantage) and develop the advantage deviation, For the importance of finance investments in the development operation and economical growth, further to that the finance investments is represent one of the most activities in the commercial banks in which aim the adequate incomes as a result of the commercial banks act to receipt the banks deposits and then make it growth and develop through commercial advantage o
... Show MoreIf the Industrial Revolution has enabled the replacement of humans with machines, the digital revolution is moving towards replacing our brains with artificial intelligence, so it is necessary to consider how this radical transformation affects the graphic design ecosystem. Hence, the research problem emerged (what are the effects of artificial intelligence on graphic design) and the research aimed to know the capabilities and effects of artificial intelligence applications in graphic design, and the study dealt in its theoretical framework with two main axes, the first is the concept of artificial intelligence, and the second is artificial intelligence applications in graphic design. The descriptive approach adopted a method of content
... Show MoreThe research aims to show the relationship between artificial intelligence in accounting education and its role in achieving sustainable development goals in the Kingdom of Bahrain. The research dealt with the role of artificial intelligence applications in accounting education at the University of Applied Sciences as a model for Bahraini universities to achieve sustainable development goals. The application of artificial intelligence in accounting education achieves seven of the seventeen sustainable development goals. It also concludes that there is an artificial intelligence infrastructure in the Kingdom of Bahrain, as it occupies a leading regional position in digital transformation, as Bahrain ranks first in the Arab world i
... Show MoreKnowing the distribution of the mechanical rock properties and the far field stresses for the field of interest is an important task for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, and subsidence. A major challenge with determining the rock's mechanical properties is that they cannot be directly measured at the borehole. Furthermore, the recovered carbonate core samples for performing measurements are limited and they provide discrete data for specific depths.
The purpose of this study is to build 2D and 3D geomechanical models of the Khasib reservoir in the East Baghdad oil field/ Central area. TECHLOG.2015.3 softwa
... Show MoreAbstract: The premise of the study is that populism is a process of building political views and critical intellectual orientations among the general public. It is transformed into mass beliefs by mobilizing the society ideologically and continuously in order to reach or control the circle of authority. We distributed the study topics to four sections: In the second, we will discuss the contents of contemporary populism and how other forms of populism evolved historically. The third is to discuss the political discourse of populism among the military regimes and the comparative Islamic parties in the Middle East, especially in terms of the essence and the intellectual foundations. The fourth section seeks to examine the characteristics o
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show More