It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.
The sale of facial features is a new modern contractual development that resulted from the fast transformations in technology, leading to legal, and ethical obligations. As the need rises for human faces to be used in robots, especially in relation to industries that necessitate direct human interaction, like hospitality and retail, the potential of Artificial Intelligence (AI) generated hyper realistic facial images poses legal and cybersecurity challenges. This paper examines the legal terrain that has developed in the sale of real and AI generated human facial features, and specifically the risks of identity fraud, data misuse and privacy violations. Deep learning (DL) algorithms are analyzed for their ability to detect AI genera
... Show MoreEMS in accordance with ISO 14001: 2015 is considered an entry point to reduce environmental impacts, especially the effects resulting from the oil industry, which is the main source of environmental pollution and waste of natural resources, since the second revision of the standard took place in September 2015. The problem of the research was manifested in the weakness in understanding the correct guidelines that must be followed in order to obtain and maintain the standard. The purpose of this research was to give a general picture of what is behind ISO14001:2015 and how it is possible to create a comprehensive base for understanding its application by seeking the gap between the actually achieved reality, standards requirements
... Show MoreThis research aims at identifying the nature of addressing the Middle East issues in the talk shows in the foreign channels speaking in Arabic "France 24, a model", and identifying the extent of interest of the channel in addressing middle east issues in the talk shows, the nature of the guests and the hosts, methods of addressing the issues, and the technical features that characterize the presenter of the research sample program. This research is considered an analytical descriptive study. It depends on the analysis of the content of the series of the weekly talk show "a week from the world" on the French channel (France 24) during the period (August 1/July 31 2018).
The most important results indicated that the foreign channels sp
Purpose: This research is to identify the most important challenges for the local investment commissions and to develop solutions and proposals to encourage local and foreign investment in local governments in Iraq (the Iraqi provinces are irregular in the region). Theoretical Framework: This research suggests a conceptual framework for the local investment commissions in order to solve their problems, the most important of which was to identify the most critical challenges which are facing the Baghdad Investment Commission BIC and how to overcome them. Design/The methodology approach: Research involved a mixed-methods approach through two stages. During the first stage, the researcher gathered quantitative data from all inves
... Show MoreGeotechnical characterization of the sites has been investigated with the collection of borehole data from different sources. Using the data, grain size distribution curves have been developed to understand the particle size distribution of the alluvium present. These curves were further used for preliminary assessment of liquefiable areas. From geotechnical characterization, it has been observed that the soil profile in the two sites is dominated by sand and silty sand.Seed and Idriss (1971) approachhas been usedevaluatethe liquefaction potentialbydeterminationof the relation between the maximum ground acceleration (a max/g) valuesdue to an earthquake and the relative density of a sand deposit in the field. The results reveal that
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More