Preferred Language
Articles
/
JIa4RIYBIXToZYALgYGp
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy inference system and genetic algorithm. An offset field data was collected from mud logging and wire line log from East Baghdad oil field south region to build the AI models, including datasets of two wells: well 1 for AI modeling and well 2 for validation of the obtained results. The types of interesting formations are sandstone and shale (Nahr Umr and Zubair formations). Nahr Umr and Zubair formations are medium –harder. The prediction results obtained from this study showed that the ANN technique can predict the ROP with high efficiency as well as FIS technique could achieve reliable results in predicting ROP, but GA technique has shown a lower efficiency in predicting ROP. The correlation coefficient and RMSE were two criteria utilized to evaluate and estimate the performance ability of AI techniques in predicting ROP and comparing the obtained results. In the Nahr Umr and Zubair formations, the obtained correlation coefficient values for training processes of ANN, FIS and GA were 0.94, 0.93, and 0.76 respectively. Data sets from another well (well 2) in the same field of interest were utilized to validate of the developed models. Datasets of well 2 were conducted against sandstone and shale formations (Nahr Umr and Zubair formations). The results revealed a good matching between the actual rate of penetration values and the predicted ROP values using two artificial intelligence techniques (neural network, and fuzzy inference technique). In contrast, the genetic algorithm model showed overestimation/ underestimation of the rate of penetration against sandstone and shale formations. This means that the optimum prediction of rate of penetration can be obtained from neural network model rather than using genetic algorithm and genetic algorithm techniques. The developed model can be successfully used to predict the rate of penetration and optimize the drilling parameters, achieving reduce the cost and time of future wells that will be drilled in the East Baghdad Iraqi oil field.

Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Iecon 2017 - 43rd Annual Conference Of The Ieee Industrial Electronics Society
Optimal second order integral sliding mode control for a flexible joint robot manipulator
...Show More Authors

The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S

... Show More
View Publication
Scopus (14)
Crossref (9)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Heat And Mass Transfer
Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
...Show More Authors

View Publication
Scopus (286)
Crossref (290)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
The Medical Journal Of Malaysia
Serum interleukin-40: an innovative diagnostic biomarker for patients with systemic lupus erythematosus
...Show More Authors

Scopus (8)
Scopus
Publication Date
Wed Apr 02 2025
Journal Name
Current Studies On Probability And Statistics
SAR-HDP: Non-parametric Topic Model for Aspect categorisation based on online reviews
...Show More Authors

Aspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Proce

... Show More
View Publication
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Transverse Magnetic Form Factor for 13C(e,e) 13C with Core-Polarization Effects
...Show More Authors

Elastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .

View Publication Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Engineering Science And Technology
Air entrained vortex occurrence at sump for inclined multiple intake pipes using cfd
...Show More Authors

Scopus (1)
Scopus
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Design Comparison between the Gravity and Pressure Sand Filters for Water Treatment, Review
...Show More Authors

Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus