There is a real problem when adding micro elements to the soil as a result of fixation, sedimentation, washing or toxicity, and thus economic loss. The plant needs micro elements in very small quantities that do not burn the leaves or cause poisoning to plants, including iron, zinc and boron, as they are essential elements for growth and completing the plant's life cycle, and increase the plant's resistance to diseases and insects, activate enzymes, and form the chlorophyll molecule, in addition to their role in oxidation and reduction processes and vital processes. The use of fertilizers with their modern technology has made the process of activating seeds or foliar nutrition a matter of interest to researchers as a complementary process to adding fertilizers through the soil. Micronutrients contribute to the manifestation of the potential energy for the growth and yield of sunflowers, including iron, zinc and boron, and their role in improving germination, seedling growth, field establishment, photosynthesis, fertility, crop production and quality, taking into account the method of adding them, whether through soil addition, foliar nutrition or pre-treatment of seeds. The seed priming technique by soaking in solutions of micronutrient elements or adding them by spraying the vegetative part of the plant is characterized by overcoming the effects of the soil on the availability and absorption of these nutrients, and they are efficient and effective methods of plant nutrition. There is a practical and knowledge gap about the low soil stock of these nutrients, and it has become clear that they can be added in a single combination by seed priming or the vegetative growth stage to bridge this gap and enhance their role in regulating the physiological and vital processes that lead to ensuring increased growth, production and quality and obtaining seeds with high vitality and vigor. It can be concluded that the environmental conditions for growing sunflowers in Iraq are suitable and reveal the possibility of expanding its cultivation, especially when avoiding the weakness, delay and heterogeneity of germination resulting from low seed vitality, environmental conditions accompanying crop cultivation, nutritional deficiency and others through managing the mother plant.
In this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more
... Show MoreThe present study aimed to assess the antibacterial activity of peanut (Arachis hypogaea L.) skin extracts. The phytochemical analysis of the peanut skin extracts was investigated, the result showed a strong presence of flavonoids, phenols, alkaloids and tannins in methanol and ethyl acetate extracts. Antibiotic susceptibility of the bacterial isolates was performed on seven antibiotics represented by Amikacin, Tetracycline, Ciprofloxacin, Chloramphenicol, Ticarcillin, Cefotaxime and Gentamicin by disc diffusion method. The antibiogram for studied isolates revealed high level resistance of A. baumannii to all of the antibiotics under test except amikacin, while Staph. aurous was resistance to Chloramphenicol and Cefotxime and sensitive to A
... Show MoreAbstract
Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe
... Show MoreThe combination of high protein content and a soft seed coat makes the wheat-rye hybrid Triticale (Triticosecale) vulnerable to attack by rice weevils. Drying triticale grain to moisture contents safe for storage can prevent infestation by rice weevils, but if grain is being stored for seed, high drying temperatures can affect seed germination. Grain can be effectively dried at low temperatures, but low-temperature drying is difficult in hot, humid regions such as the Gulf Coast. This study nvestigated the effects of drying temperatures from 35°C to 45°C on triticale seed germination and found no statistical differences between the germination rates of the seed at any of the drying temperatures and the germination rates of controls. Final
... Show MoreThis experiment was carried out in the College of Agricultural Engineering Sciences, Univ. of Baghdad, during autumn 2021 growing season to investigate possibility study of increase lettuce antioxidant and biological yield, growing and producing lettuce hydroponically under film technique (NFT) using a globally approved standard solution (Cooper solution), Nested design with three replications adopted in the experiment, each of them included in main plot the first factor, which is LED light (B and R), Then levels of second factor were randomly distributed within each replicate, which included spraying with organic nutrients which was Cymbopogon citratus and Hibiscus sabdariffa at two
This paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show MoreAbstract
All central air conditioning systems contain piping system with various components, sizes, material, and layouts. If such systems in operating mode, the flow in piping system and its component such as valves can produce severe vibration due to some flow phenomenon’s. In this research, experimental measurements and numerical simulation are used to study the flow-induced vibration in valves. Computational fluid dynamics (CFD) concepts are included with one-way and two-way fluid-structure interaction concepts by using finite element software Package (ANSYS 14.57). Detection analysis is performed on flow characteristics under operation conditions and relations with structural vibration. Most of
... Show MoreAn anatomical study was carried out at the College of Agricultural Engineering Sciences, University of Baghdad, in 2017, on lupine crop (Lupinus albus) as a comparison guide of three seed weights of three lupine cultivars viz. ‘Giza-1’, ‘Giza-2’ and ‘Hamburg’. The nested design was used with four replications. The results showed that cultivars had a significant effect on stem anatomical traits. ‘Hamburg’ cultivar recorded the highest stem diameter, cortex thickness and xylem vascular diameter, while cultivar ‘Giza-1’ recorded the lowest values for the same traits as well as the highest collenchyma layer thickness, vascular bundle thickness, and xylem thickness. Cultivar ‘Giza-2’ recorded the lowest vascular bundle th
... Show MoreObjectives: The study aims at:
1- Measuring the level of lead in workers’ saliva and blood in the factory.
2- Studying the correlation between the saliva lead level and the infection that caused by microorganisms, isolation and
identification.
3-Studying the influence of high blood lead level on the total white blood cells.
Methodology: This study has been conducted for the period from March 15th, 2010 to May, 20th
, 2010. A total of (60)
saliva and blood samples were collected from workers in batteries industry factory in Baghdad and another (20) samples
were collected as a control group. Lead level had been measured in blood and saliva samples, then microorganisms were
isolated the from the saliva samples.
Gypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image
... Show More