The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second–order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.
A novel technique for nanoparticles with a chemical method and impact for resistance bacteria methicillin-resistant Staphylococcus aureus (MRSA), UV-visible analysis confirmed the by Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray (EDX), Scanning electron microscope (SEM) and X-ray diffraction pattern estimation antimicrobial excellent antibacterial activity against MRSA (with zone of inhibition of 11 ± 02 mm , 9 ± 01 mm,8 ± 03 mm and 7.5 ± 02 mm and 6.5 ± 02 mm) at different concentrations (0.5 ,0.25, 0.125, 0.0625, 0.03125) mg/ml while good activity was 16 ± 03 mm at 17 ± 02 mm zone at 0.25, 0.125 mg/mL, respectively. The increase in microorganism resistance to antibiotics a couple of have caused
... Show MoreAims: This study was conducted to assess the effect of the addition of yttrium oxide (Y2O3) nanoparticles on the tensile bond strength, tear strength, shore A hardness, and surface roughness of soft-denture lining material. Materials and Methods: Y2O3 NPs with 1.5 and 2 wt.% were added into acrylic-based heat-cured soft-denture liner. A total of 120 specimens were prepared and divided into four groups according to the test to be performed (tensile bond strength, tear strength, surface hardness, and surface roughness). Results: There was a highly significant increase in tensile bond strength between the soft liner and the acrylic denture base, tear strength, and hardness at both concentrations as compared to the control group, whereas ther
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreThe subject of this research involves studying adsorption to remove hexavalent chromium Cr(VI) from aqueous solutions. Adsorption process on bentonite clay as adsorbent was used in the Cr(VI) concentration range (10-100) ppm at different temperatures (298, 303, 308 and 313)K, for different periods of time. The adsorption isotherms were obtained by obeying Langmuir and Freundlich adsorption isotherm with R2 (0.9921-0.9060) and (0.994-0.9998), respectively. The thermodynamic parameters were calculated by using the adsorption process at four different temperatures the values of ?H, ?G and ?S was [(+6.582 ? +6.547) kJ.mol-1, (-284.560 ? -343.070) kJ.mol-1 and (+0.977 ? +1.117) kJ.K-1.mol-1] respectively. This data indicates the spontaneous sorp
... Show More
This investigation was carried out to study the treatment and recycling of wastewater in the Battery industry for an effluent containing lead ion. The reuse of such effluent can only be made possible by appropriate treatment method such as electro coagulation.
The electrochemical process, which uses a cell comprised aluminum electrode as anode and stainless steel electrode as cathode was applied to simulated wastewater containing lead ion in concentration 30 – 120 mg/l, at different operational conditions such as current density 0.4-1.2 mA/cm2, pH 6 -10 , and time 10 - 180 minute.
The results showed that the best operating conditions for complete lead removal (100%) at maximum concentration 120 mg/l was found to be 1.2 mA/cm2 cur
Crude soybean peroxidase (SBP), isolated from soybean seed coats (hulls) at unusually low concentrations, catalyses the oxidative polymerisation of hazardous aqueous benzidine and its 3,3′-dichloro, 3,3′-dimethyl and 3,3′-dimethoxy derivatives in the presence of hydrogen peroxide. The optimum operating conditions for oxidation of 0·10 mM benzidine were investigated. At pH 5, the hydrogen peroxide-to-substrate concentration ratio was 1·5 and the minimum SBP concentration required to achieve at least 95% conversion of the benzidine in synthetic wastewater was 0·43 mU/ml. Progress curves were established for the conversion of the four substrates, and apparent first-order rate constants were derived. Enzyme-catalysed polym
... Show More

