Preferred Language
Articles
/
JBYRU4cBVTCNdQwC1UXb
Detecting Damaged Buildings on Post-Hurricane Satellite Imagery based on Transfer Learning
...Show More Authors

In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performance measures are used as a criterion to decide which classifier is the best one to detect the images with high accuracy. Eventually, the simulation results show that each classifier detect the damage/no damage image with different performance measures and then makes it easy to select the best one.

Scopus Crossref
View Publication
Publication Date
Mon May 01 2023
Journal Name
Journal Of Building Engineering
The influence of earthquake characteristics on the seismic performance of reinforced concrete buildings in Australia with varying heights
...Show More Authors

In Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affe

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Detection and Classification of The Osteoarthritis in Knee Joint Using Transfer Learning with Convolutional Neural Networks (CNNs)
...Show More Authors

    Osteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA usin

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (3)
Scopus Crossref
Publication Date
Tue May 07 2019
Journal Name
Acm Journal On Emerging Technologies In Computing Systems
Neuromemrisitive Architecture of HTM with On-Device Learning and Neurogenesis
...Show More Authors

Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil

... Show More
View Publication
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (270)
Crossref (238)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A Finite Element Analysis for the Damaged Rotating Composite Blade
...Show More Authors

In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included.  The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. After modeling a non-damaged rotating composite blade, the work procedure was to ap

... Show More
View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Window Size Changing on Satellite Image Segmentation Using 2D Fast Otsu Method
...Show More Authors

     Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.  

Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.

View Publication Preview PDF
Publication Date
Mon Dec 03 2012
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Window Size Changing on Satellite Image Segmentation Using 2D Fast Otsu Method
...Show More Authors

Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
A nonlinear edge –preserving smoothing filter for edge detection on color and gray satellite images
...Show More Authors

A nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.

View Publication Preview PDF
Crossref
Publication Date
Sun May 03 2020
Journal Name
Systematic Reviews In Pharmacy
Therapeutic Effect of Pumpkin ( Cucurbita pepo L.) on Post Burn Injury in White Mice
...Show More Authors

View Publication
Publication Date
Thu Feb 01 2018
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Effect of High Temperature (Fire Flame) on the Behavior of Post-tensioned Concrete Beams
...Show More Authors

View Publication Preview PDF