Tensile strength is a critical property of Hot Mix Asphalt (HMA) pavements and is closely related to distresses such as fatigue cracking. This study aims to evaluate methods for assessing fatigue cracking in Asphalt Concrete (AC) mixes. In order to achieve optimum density at different binder contents, the mixes were compressed using a gyratory compactor. Tensile strength was assessed using the Indirect Tensile (IDT) and Semi-Circular Bend (SCB) tests. The results showed that the tensile strength measured by the SCB test was consistently higher than that measured by the IDT test at 25 °C. In addition, the SCB test showed a stronger correlation between increasing binder content and tensile strength. For binder contents ranging from 4.2% to 5.2%, the IDT test results increased from 541% to 678.7%, while the SCB test results increased from 630.3% to 743.7%. These results suggest that the SCB test provides a more accurate representation of the tensile strength of AC mixes than the IDT test.
This study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference betwe
This study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference betwe
Poly methyl methacrylate PMMA polymer could be considered the main material that used mostly in the recent years in denture base fabrication. It commonly known by it is poor strength properties such as low impact strength. The aim of the present research was to enhance the performance of PMMA denture base through the addition of two kind of nanoparticles (nano particles that selected from artificial and natural sources). Nano -particles from both Al2O3 and crushed peanut Peel were used for comparing purposes.Various weight fraction used in this study for both kinds of the additive (1%, 2% and 3%). Moreover, in this work a study and evaluation in impact strength (I.S.) value were done before and after immersion. The new prepared nanocompo
... Show MoreObjective: Evaluate the effects of different storage periods on flexural strength (FS) and degree of conversion (DC) of Bis-Acryl composite and Urethane dimethacrylate provisional restorative materials. Material and Methods: A total of 60 specimens were prepared from four temporary crown materials commercially available and assigned to four tested groups (n = 15 for each group): Prevision Temp, B&E CROWN, Primma Art, and Charm Temp groups. The specimens were stored in artificial saliva, and the FS was tested after 24 h, 7 d, and 14 d. A standard three-point bending test was conducted using a universal testing machine. Additionally, the DC was determined using a Fourier transform infrared spectroscopy (FTIR) device. The data were analyzed st
... Show MoreThis research investigated the influence of water-absorbent polymer balls (WAPB) on reinforced concrete beams’ structural behavior experimentally. Four self-compacted reinforced concrete beams of identical geometric layouts 150 mm × 200 mm × 1,500 mm, reinforcement details, and compressive strength
Reactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlu
... Show MoreIn this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show MoreAutorías: Ghassan Adeeb Abdulhasan, Rasha Raed Hamid Hameed, Hussein Jabber Abood. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.