This work revealed the spherical aromaticity of some inorganic E4 cages and their protonated E4H+ ions (E=N, P, As, Sb, and Bi). For this purpose, we employed several evaluations like (0D-1D) nucleus independent chemical shift (NICS), multidimensional (2D-3D) off-nucleus isotropic shielding σiso(r), and natural bond orbital (NBO) analysis. The magnetic calculations involved gauge-including atomic orbitals (GIAO) with two density functionals B3LYP and WB97XD, and basis sets of Jorge-ATZP, 6-311+G(d,p), and Lanl2DZp. The Jorge-ATZP basis set showed the best consistency. Our findings disclosed non-classical aromatic characters in the above molecules, which decreased from N to Bi cages. Also, the results showed more aromaticity in E4 than E4H+. The NBO analysis attributed the aromaticity in the above molecules to the residual density of the overlapping σ-bonding orbitals. So, the aromaticity in these molecules is unlike the classical aromaticity that is associated with electron delocalization. Scanning 1D σiso(r) variation along E−E bonds indicated a lowering in the shielding trend from N to Bi cages. The 3D results showed a similar decrease in the relative volumetric diffusion of the magnetic activity, whereas the volumetric ratio of V1ppm/V2ppm is almost constant for all the E4 cages.
Abstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show MoreMagnetic Abrasive Finishing (MAF) is an advanced finishing method, which improves the quality of surfaces and performance of the products. The finishing technology for flat surfaces by MAF method is very economical in manufacturing fields an electromagnetic inductor was designed and manufactured for flat surface finishing formed in vertical milling machine. Magnetic abrasive powder was also produced under controlled condition. There are various parameters, such as the coil current, working gap, the volume of powder portion and feed rate, that are known to have a large impact on surface quality. This paper describes how Taguchi design of experiments is applied to find out important parameters influencing the surface quality generated during
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
Background: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods
... Show MoreIn this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show MorePotential data interpretation is significant for subsurface structure characterization. The current study is an attempt to explore the magnetic low lying between Najaf and Diwaniyah Cities, In central Iraq. It aims to understand the subsurface structures that may result from this anomaly and submit a better subsurface structural image of the region. The study area is situated in the transition zone, known as the Abu Jir Fault Zone. This tectonic boundary is an inherited basement weak zone extending towards the NW-SE direction. Gravity and magnetic data processing and enhancement techniques; Total Horizontal Gradient, Tilt Angle, Fast Sigmoid Edge Detection, Improved Logistic, and Theta Map filters highlight source boundaries and the
... Show MoreJurisprudence of Imam women through Susan Book of blood money
This study investigates the characterization and growth dynamics of a Magnetically Stabilized Gliding Arc Discharge (MSGAD) system, generating non-thermal plasma with argon gas under atmospheric pressure and flow rates of 1-5 L/min. The electrical properties and growth patterns concerning gas flow rates and applied voltages were examined utilizing a magnetic field for stability. Using a digital oscilloscope, a correlation between voltage reduction and increased current was uncovered. An algorithm analyzes digital images to compute arc length, area, and volume. Results reveal how gas flow rate and applied voltage directly impact arc growth. Furthermore, the magnetic field's role in guiding and stabilizing the plasma discharge was explored. T
... Show More