Abstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreRecently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreThe modern systems that have been based upon the hash function are more suitable compared to the conventional systems; however, the complicated algorithms for the generation of the invertible functions have a high level of time consumption. With the use of the GAs, the key strength is enhanced, which results in ultimately making the entire algorithm sufficient. Initially, the process of the key generation is performed by using the results of n-queen problem that is solved by the genetic algorithm, with the use of a random number generator and through the application of the GA operations. Ultimately, the encryption of the data is performed with the use of the Modified Reverse Encryption Algorithm (MREA). It was noticed that the
... Show MoreToday the Genetic Algorithm (GA) tops all the standard algorithms in solving complex nonlinear equations based on the laws of nature. However, permute convergence is considered one of the most significant drawbacks of GA, which is known as increasing the number of iterations needed to achieve a global optimum. To address this shortcoming, this paper proposes a new GA based on chaotic systems. In GA processes, we use the logistic map and the Linear Feedback Shift Register (LFSR) to generate chaotic values to use instead of each step requiring random values. The Chaos Genetic Algorithm (CGA) avoids local convergence more frequently than the traditional GA due to its diversity. The concept is using chaotic sequences with LFSR to gene
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show More