Preferred Language
Articles
/
IoYQqYYBIXToZYALv6OA
Numerical Study of Specially Shaped Slender RC Columns under Compressive Load
...Show More Authors
Abstract<p>In most Reinforced Concrete (RC) buildings, the cross-section size of rectangular columns that conventionally used in these structures is larger than the thickness of their partitions. Consequently, a part of the column is protruded out of the wall which has some architectural disadvantages. Reducing the column size by using high strength concrete will result in slender column, thus the stability problem may be occurred. The stability problem is difficult to be overcome with rectangular columns. This paper study the effectiveness of using new types of columns called Specially Shaped Reinforced Concrete (SSRC) columns. Besides, the use of SSRC columns provides many structural advantages when compared with traditional rectangular columns. This research was conducted to study the structural behavior of slender SSRC columns via nonlinear finite element analysis using Abaqus program. The study based on twenty-four RC column specimens of the same cross-sectional area and different shapes and Slenderness Ratios (SR). The results showed that the use of SSRC columns led to improve the strength by about 12% and reduce deformations as compared with the square-shaped specimen. However, the columns individually exhibited almost the same trend of decreasing the strength with increasing in SR. In general, a maximum loss in strength of about 10% was found when the SR increased to 40 and 35% for columns with SR of 80. Two design approaches were proposed to evaluate the strength of SSRC columns under concentric loading. The results obtained show a good structural response of SSRC columns as compared with square-shaped columns.</p>
Scopus Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Enhancing the Compressive Strength and Density of Cement Mortar by the Addition of Different Alignments of Glass Fibers and Styrene Butadiene Rubber
...Show More Authors

Abstract

In the field of construction materials the glass reinforced mortar and Styrene Butadiene mortar are modern composite materials. This study experimentally investigated the effect of addition of randomly dispersed glass fibers and layered glass fibers on density and compressive strength of mortar with and without the presence of Styrene Butadiene Rubber (SBR). Mixtures of 1:2 cement/sand ratio and 0.5 water/cement ratio were prepared for making mortar. The glass fibers were added by two manners, layers and random with weight percentages of (0.54, 0.76, 1.1 and 1.42). The specimens were divided into two series: glass-fiber reinforced mortar without SBR and glass-fiber reinforced mortar with 7% SBR of mixture water. All s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology &amp; Applied Science Research
A Comparison between Static and Repeated Load Test to Predict Asphalt Concrete Rut Depth
...Show More Authors

Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur

... Show More
View Publication
Crossref (15)
Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Cooling Load Calculations For Typical Iraqi Roof And Wall Constructions Using Ashrae's RTS Method
...Show More Authors

The present work is an attempt to develop design data for an Iraqi roof and wall constructions using the latest ASHRAE Radiant Time Series (RTS) cooling load calculation method. The work involves calculation of cooling load theoretically by introducing the design data for Iraq, and verifies the results experimentally by field measurements. Technical specifications of Iraqi construction materials are used to derive the conduction time factors that needed in RTS method calculations. Special software published by Oklahoma state university is used to extract the conduction factors according to the technical specifications of Iraqi construction materials.  Good agreement between the average theoretical and measured cooli

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
A Real-Time Fuzzy Load Flow and Contingency Analysis Based on Gaussian Distribution System
...Show More Authors

Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed  method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 29 2019
Journal Name
Journal Of Engineering
Demand Priority in a Power System With Wind Power Contribution Load Shedding Scheme Based
...Show More Authors

The load shedding  scheme has been extensively implemented as a fast solution for unbalance conditions. Therefore, it's crucial to investigate supply-demand balancing in order to protect the network from collapsing and to sustain stability as possible, however its implementation is mostly undesirable. One of the solutions to minimize the amount of load shedding is the integration renewable energy  resources, such as wind power, in the electric power generation could contribute significantly to minimizing power cuts as it is ability to positively improving the stability of the electric grid. In this paper propose a method for shedding the load base on the priority demands with incorporating the wind po

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
The Effect of Variable Load on Dynamic Behavior of Thin Pipe by Hamilton Principle and Cfx-Ansys
...Show More Authors

This paper presents the study and analysis, analytically and numerical of circular cylindrical shell pipe model, under variable loads, transmit fluid at the high velocity state (fresh water). The analytical analysis depended on the energy observation principle (Hamilton Principle), where divided all energy in the model to three parts , strain energy, kinetic energy and transmitted energy between flow and solid (kinetic to potential energy). Also derive all important equations for this state and approach to final equation of motion, free and force vibration also derived. the relations between the displacement of model function of velocity of flow, length of model, pipe thickness, density of flowed with location coordinate x-axis and angle

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Engineering
A Prediction Formula for The Estimation of Sediment Load in The Upper Reach of Al-Gharraf River
...Show More Authors

The presence of deposition in the river decreases the river flow capability's efficiency due to the absence of maintenance along the river. In This research, a new formula to evaluate the sediment capacity in the upstream part of Al-Gharraf River will be developed. The current study reach lies in Wasit province with a distance equal to 58 km. The selected reach of the river was divided into thirteen stations. At each station, the suspended load and the bedload were collected from the river during a sampling period extended from February 2019 till July 2019. The samples were examined in the laboratory with a different set of sample tests. The formula was developed using data of ten stations, and the other three s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Journal Of Electronic Materials
Numerical Modeling of 193-nm Excimer Laser Ablation on CR-39 Polymer
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 1995
Journal Name
المجلة العراقية للاحياء المجهرية
NUMERICAL CHARACTERIZATION OF HALOBACTERIUM SPECIES ISOLATED FROM LOCAL HIGH SALIENT DESERTIFICATION SOILS
...Show More Authors

ABSTRACT Fifty extremely halophilic bacteria were isolated from local high salient soils named Al-Massab Al-Aam in south of iraq and were identified by using numerical taxonomy. Fourty strains were belong to the genus Halobacterium which included Hb. halobium (10%). Hb. salinarium (12.5%), Hb.cutirubrum (17.5%), Hb-saccharovorum (12.5%), Hb. valismortis (10%) and Hb. volcanii (37.5%). Growth curves were determined. Generation time (hr) in complex media and logarithmic phase were measured and found to be 10.37±0.59 for Hb. salinarium. 6.49 ± 0.24 for Hb.cutirubrum. 6.70±0.48 for Hb-valismonis, and 11.24 ± 0.96 for Hb. volcanii