Preferred Language
Articles
/
IoYQqYYBIXToZYALv6OA
Numerical Study of Specially Shaped Slender RC Columns under Compressive Load
...Show More Authors
Abstract<p>In most Reinforced Concrete (RC) buildings, the cross-section size of rectangular columns that conventionally used in these structures is larger than the thickness of their partitions. Consequently, a part of the column is protruded out of the wall which has some architectural disadvantages. Reducing the column size by using high strength concrete will result in slender column, thus the stability problem may be occurred. The stability problem is difficult to be overcome with rectangular columns. This paper study the effectiveness of using new types of columns called Specially Shaped Reinforced Concrete (SSRC) columns. Besides, the use of SSRC columns provides many structural advantages when compared with traditional rectangular columns. This research was conducted to study the structural behavior of slender SSRC columns via nonlinear finite element analysis using Abaqus program. The study based on twenty-four RC column specimens of the same cross-sectional area and different shapes and Slenderness Ratios (SR). The results showed that the use of SSRC columns led to improve the strength by about 12% and reduce deformations as compared with the square-shaped specimen. However, the columns individually exhibited almost the same trend of decreasing the strength with increasing in SR. In general, a maximum loss in strength of about 10% was found when the SR increased to 40 and 35% for columns with SR of 80. Two design approaches were proposed to evaluate the strength of SSRC columns under concentric loading. The results obtained show a good structural response of SSRC columns as compared with square-shaped columns.</p>
Scopus Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
The Effect of Vehicle Body Shapes on the Near Wake Region and Drag Coefficient: A Numerical Study
...Show More Authors

The purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Numerical Study of Heat Transfer Enhancement for a Flat Plate Solar Collector by Adding Metal Foam Blocks
...Show More Authors

Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 13 2020
Journal Name
Day 3 Wed, January 15, 2020
Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study
...Show More Authors
<p>Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t</p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental and Numerical Study Effect of Using Nanofluids in Perforated Plate Fin Heat Sink for Electronics Cooling
...Show More Authors

An experimental and numerical investigation of the effect of using two types of nanofluids with suspending of (Al2O3 and CuO) nanoparticles in deionized water with a volume fraction of (0.1% vol.), in addition to use three types of fin plate configurations of (smooth, perforated, and dimple plate) to study the heat transfer enhancement characteristics of commercial fin plate heat sink for cooling computer processing unit. All experimental tests under simulated conditions by using heat flux heater element with input power range of (5, 16, 35, 70, and 100 W). The experimental parameters calculated are such as water and nanofluid as coolant with Reynolds number of (7000, 8000, 9400 and 11300); the air

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Irradiation Duration Effect of Gamma Ray on the Compressive Strength of Reactive Powder Concrete
...Show More Authors

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Irradiation Duration Effect of Gamma Ray on the Compressive Strength of Reactive Powder Concrete
...Show More Authors

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Springer Series In Geomechanics And Geoengineering
Improvement of Unconfined Compressive Strength of Soft Clay by Grouting Gel and Silica Fume
...Show More Authors

Scopus (31)
Crossref (20)
Scopus Crossref
Publication Date
Mon Jun 24 2019
Journal Name
University Of Thi-qar Journal
Assessment of the Performance of Stone Columns through the Seismic Wave Test: A Review
...Show More Authors

The geophysical testing is increasingly being employed in many geotechnical applications. It is preferred in monitoring the mechanical characteristics of the ground because of its economy, not time consuming and non-destructive nature. Seismic wave test is one of the geophysical methods which showed a potential in observing the general behaviour of the reinforced soil with stone columns. Findings in most cases showed that the seismic wave measurements was integrated with or compared to the conventional tests such as standard penetration test or cone penetration test. There was a noticeable success in identifying the enhancement achieved to the ground upon the strengthening with the column, specifically when the associated surveys can produc

... Show More
View Publication Preview PDF
Publication Date
Sun May 31 2020
Journal Name
Buildings
Experimental and Numerical Study of Behaviour of Reinforced Masonry Walls with NSM CFRP Strips Subjected to Combined Loads
...Show More Authors

Near surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) wa

... Show More
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Design and Analysis of the Hexagonal-Shaped Antenna with Multi-Band Feature for WLAN, WiMAX, and LTE Applications
...Show More Authors

Developing and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results rep

... Show More
View Publication Preview PDF
Crossref (1)
Crossref