BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
Background: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the therm
... Show MoreBackground: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the
... Show MoreDynamic Thermal Management (DTM) emerged as a solution to address the reliability challenges with thermal hotspots and unbalanced temperatures. DTM efficiency is highly affected by the accuracy of the temperature information presented to the DTM manager. This work aims to investigate the effect of inaccuracy caused by the deep sub-micron (DSM) noise during the transmission of temperature information to the manager on DTM efficiency. A simulation framework has been developed and results show up to 38% DTM performance degradation and 18% unattended cycles in emergency temperature under DSM noise. The finding highlights the importance of further research in providing reliable on-chip data transmission in DTM application.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreThe emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreMH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022
Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreBackground: Beta-thalassemia major is the most common monogenic known disorder in the Middle East, characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic Individuals. This study aimed to evaluate salivary flow rate and salivary IgA in β-thalassemia major patients. Since many oral and systemic conditions manifest themselves as changes in the flow and composition of saliva the dental practitioner is advised to remain up-to-date with this issue. Materials and methods: The study samples consist of (60) subjects, patients group composed of (30) patients with β –thalassemia major, age rang (5-23) years and (30) healthy locking
... Show MoreThe scholastic view of public religion differed, and this difference was on two extremes. All economic schools agreed that public debt is a monetary liquidity that was unjustly deducted from the income and output cycle as a result of the imbalance in the economic balance and the departure from the conditions of balance between aggregate demand and aggregate supply. Debt is a waste of financial resources allocated to productive accumulation. Except for the Keynesian school, which considers public debt to be an addition to aggregate demand after the decline in the role of the private sector in investment as a result of pessimistic expectations that warn of signs of economic contraction. Public debt is linked to the ex
... Show More