Preferred Language
Articles
/
IhhlmpgBVTCNdQwCocCl
Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets
...Show More Authors

The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classification by adapting VGG-16 net and VGG-19 net models and subsequently identifying the optimal performer between the two nets during the classification process. A publicly available dataset comprising 500 images categorized into 5 distinct classes (100 images per class), was utilized in this work. The obtained empirical outcomes demonstrate a remarkable accuracy rate of 99.6% for the VGG-16 net model, while VGG-19 net achieves a 100% accuracy rate. Based on these findings, it can be inferred that VGG-19 net exhibits superior performance in classifying images of grapevine leaves compared to the VGG-16 net. © (2024), (Universitas Ahmad Dahlan). All Rights Reserved.

Scopus Crossref
View Publication
Publication Date
Sun Jun 12 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Using Phone Calls to Promote Community Pharmacist Counselling during COVID-19 Pandemic in Baghdad, Iraq
...Show More Authors

Drug consultation is an important part of pharmaceutical care. mobile phone call or text message can serve as an easy, effective, and implementable alternative to improving medication adherence and clinical outcomes by providing the information needed significantly for people with chronic illnesses like diabetes and hypertension particularly during pandemics like COVID-19 pandemic.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Mon Mar 21 2022
Journal Name
International Journal For Research In Applied Sciences And Biotechnology
Article Review: Toll-like Receptors and COVID-19
...Show More Authors

By March 2020, a pandemic had been emerged Corona Virus Infection in 2019 (COVID-19), which was triggered through the sensitive pulmonary syndrome (SARS disease corona virus- 2 (SARS COV-2). Overall precise path physiology of SARS COV-2 still unknown, as does the involvement of every element of the acute or adaptable immunity systems. Additionally, evidence from additional corona virus groups, including SARS COV as well as the Middle East pulmonary disease, besides that, fresh discoveries might help researchers fully comprehend SARS CoV-2. Toll-like receptors (TLRs) serve a critical part in both detection of viral particles as well as the stimulation of the body's immune response. When TLR systems are activated, pro-inflammatory cy

... Show More
View Publication
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using a hybrid SARIMA-NARNN Model to Forecast the Numbers of Infected with (COVID-19) in Iraq
...Show More Authors

Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 13 2022
Journal Name
Ibero-american Journal Of Exercise And Sports Psychology
The effect of Sakyo training (S.A.Q) in developing some physical and kinetic abilities and completing 110m hurdles for 16-year-old specialized school players
...Show More Authors

The event of crossing the barriers is one of the Power Games activities that have received great attention in the field of researches. Which led to ma..

View Publication Preview PDF
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (48)
Scopus
Publication Date
Sun Apr 01 2018
Journal Name
Al–bahith Al–a'alami
‏Framing war against ISIS in New York Times/ from 10/17/2016 to 4/16/2017
...Show More Authors

The research is aimed at investigating how the New York Times framed the war against ISIS in its news coverage and which news sources it adopted while reporting on this war.
‏ The research could be classified under descriptive researches. The survey methodology has been adopted and the content analysis has been used. The research sample consists of all the news stories the New York Times have published about the war against ISIS from 10/17/2016 to 4/16/2017 according to the comprehensive sampling method. The number of news stories that were analyzed was (155) news story. The research tool was (coding scheme).
The research has reached the following conclusions:
‏ 1. In its news coverage of the war against ISIS, the New York T

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue May 16 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Comparative Study of Anemia Classification Algorithms for International and Newly CBC Datasets
...Show More Authors

Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
The genetic inhibition of some pathogenic bacterial isolates related to Enterobacteriaceae by using Different leaves extracts of Cider (Nabag) Zizyphus spina-christa
...Show More Authors

The plant Zizyphus spina-christa grows wildly in the middle and southern of Iraq locally named Nabag. In this study the antibacterial activity of several different plant extract (alcoholic hot and cold extract 80%, aqueous hot and cold extract) was tested against some gram negative bacteria that related to Enterobacteriacea as follow; Pseudomonas aeruginosa, Escherchia coli Proteus mirabilis, Serratia mercesence,. Aeromonas sp, Klebsiella pneumoniae ,Shigella sp, Salmonella enteritidis (134), S. typhi(97), S. typhimurium (300) , S. typhi, . The results showed that efficient method of extract was alcoholic hot extract from other extract methods that are used in this study. The detection of active compound in crude extracts of the leaves show

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 12 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of silicon calcium, boron on Proline and relative water contents in Apple leaves
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref