The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classification by adapting VGG-16 net and VGG-19 net models and subsequently identifying the optimal performer between the two nets during the classification process. A publicly available dataset comprising 500 images categorized into 5 distinct classes (100 images per class), was utilized in this work. The obtained empirical outcomes demonstrate a remarkable accuracy rate of 99.6% for the VGG-16 net model, while VGG-19 net achieves a 100% accuracy rate. Based on these findings, it can be inferred that VGG-19 net exhibits superior performance in classifying images of grapevine leaves compared to the VGG-16 net. © (2024), (Universitas Ahmad Dahlan). All Rights Reserved.
Objective: To evaluate two kinds of extraction (aqueous and ethanolic) for coriander using seeds, leaves and stems and
studying their antibacterial activity against nine different microorganisms.
Methodology: Coriander was selected to carry out this study. Seeds, leaves and stems were collected from local markets in
Baghdad then dried in shade for at least 10 days and grinded to fine powder. Aqueous hot extracts for 1hr. at (50
c) and
cold extracts for 24 hrs at (4
c) were performed by using seeds, leaves and stems then studied antibacterial effect against
nine different microorganisms by using well diffusion technique. Cold aqueous extracts of coriander seeds for 48 hrs. and
72 hrs and ethanolic extraction
The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreIn this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles ha
... Show MoreThe study aimes to investigate the effects of leaves & fruits ethanolic extract of Duranta repens L. on biological performance for all stages of life cycle of the mosquito Culex pipiens piepiens L., For this purpose the mosquitoes were reared in the laboratory till the fourth generation .Different concentrations of leaves (800,1000,1200,1400ppm) and fruits (800,1000,1200ppm) were tested on (eggs,larval stages,pupal stages and the adult stages). The results revealed that the extracts gave highest mortality rate for the eggs at(100%) compared with control,fruits extract shown highest mortality rate of the four larval instars (100%)at 1200ppm compared with leave extract at(80,50,33.33,20%).Also the extract caused a high mortality rate for pupa
... Show MoreThis study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in t
... Show MoreIntroduction: Since the hallmark of gestational trophoblastic disease is trophoblastic proliferation, Ki67 is regarded as the best marker in studying hydatidiform mole.This study was conducted to evaluate the role of this proliferative marker in distinguishing among hydropic abortion, partial and complete hydatidiform mole. Materials and methods: This is a cross sectional study involving the application of Ki67 on a total of 90 histological samples of curetting materials from molar (partial and complete mole) and non molar hydropic abortion belong to Iraqi females, so three study groups were created. Immunohistochemical expression in villous cytotrophoblasts, syncytiotrophoblasts and stromal cells were recorded separately by three i
... Show More