The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classification by adapting VGG-16 net and VGG-19 net models and subsequently identifying the optimal performer between the two nets during the classification process. A publicly available dataset comprising 500 images categorized into 5 distinct classes (100 images per class), was utilized in this work. The obtained empirical outcomes demonstrate a remarkable accuracy rate of 99.6% for the VGG-16 net model, while VGG-19 net achieves a 100% accuracy rate. Based on these findings, it can be inferred that VGG-19 net exhibits superior performance in classifying images of grapevine leaves compared to the VGG-16 net. © (2024), (Universitas Ahmad Dahlan). All Rights Reserved.
The primary aim of the present study was to prepare a set of exercises on the multi-resistor VertiMax device and to identify the effect of these exercises on the development of the endurance of discus throwers under 16 years old. The design of the present study was experimental. Participants were selected using purposive sampling method. A total of 5 discuss players constituted the sample of the study. The authors found a significant improvement in the levels of endurance and performance as a result of the training on the VertiMax device. Therefore, it is recommendable to use exercises on the VertiMax device to improve the endurance and performance of under 16-years of age discus throwers.
Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreBackground. The motor response is a fundamental ability that is evident during any physical or motor activity. However, the need for this ability varies from one sport to another and depends on the specific skills required in each sport. Objectives. This study aims to compare the average motor reaction times of the arm and leg among handball, basketball, and volleyball players aged 14 to 16 years. Methods. The sample included 30 players aged 14-16 years from the sports talent care center, evenly distributed on handball, basketball, and volleyball. Standardized tests were used to measure the speed of motor response, including the Batak Micro test for hands, which records the number of responses to light stimuli in 30 seconds, and the Saqer t
... Show Moreالحمدُ للهِ رب العالمين ، والصلاة والسلام على نبيه الأمين محمد r وعلى آله الطيبين الطاهرين ، وأصحابه الغر الميامين:
تعد الصورة السمعية مفهوما بيانيا نجده في البلاغة العربية واضحاً مؤثرا، مؤديا دورا جوهريا في إيصال الفكرة التي يروم الأديب إيصالها إلى المتلقي ولا تبدو السمعية واضحة إلاّ إذا نظر إليها في حالة أدبيه تهز كيان الشاعر  
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used. Experimental results shows LPG-PCA method
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreThe consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreThis study investigated the effect of using brainstorming as a teaching technique on the students’ performance in writing different kinds of essays and self regulation among the secondary students. The total population of this study, consisted of (51) female students of the 5th Secondary grade in Al –kawarzmi School in Erbil during the academic year 2015-2016. The chosen sample consisted of 40 female students, has been divided into two groups. Each one consists of (20) students to represent the experimental group and the control one. Brainstorming technique is used to teach the experimental group, and the conventional method is used to teach the control group. The study inst
... Show More