Recently, all over the world mechanism of cloud computing is widely acceptable and used by most of the enterprise businesses in order increase their productivity. However there are still some concerns about the security provided by the cloud environment are raises. Thus in this our research project, we are discussing over the cloud computing paradigm evolvement for the large business applications like CRM as well as introducing the new framework for the secure cloud computing using the method of IT auditing. In this case our approach is basically directed towards the establishment of the cloud computing framework for the CRM applications with the use of checklists by following the data flow of the CRM application and its lifecycle. Those checklists are prepared on the basis of models of cloud computing such as deployment models and services models. With this project our main concern is to present the cloud computing implications through the large database enterprise CRM application and achieving the desired level of security with design and implementation of IT auditing technique. We claim that with this our proposed methods for the CRM applications, we will providing the security, regulations, compliance of such cloud computing environments.
Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreIn today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreTo develop a petrol engine so that it works under the bi-engine pattern (producer gas-petrol) without any additional engine modifications, a single-point injection method inside the intake manifold is a simple and inexpensive method. Still, it leads to poor mixing performance between the air and producer gas. This deficiency can cause unsatisfactory engine performance and high exhaust emissions. In order to improve the mixing inside the intake manifold, nine separate cases were modelled to evaluate the impact of the position and angle orientation inside the intake manifold on the uniformity and spread of the mixture under AFR=2.07. A petrol engine (1.6 L), the maximum engine speed (8000 rpm), and bi-engine mode (petrol-producer ga
... Show MoreThe question about the existence of correlation between the parameters A and m of the Paris function is re-examined theoretically for brittle material such as alumina ceramic (Al2O3) with different grain size. Investigation about existence of the exponential function which fit a good approximation to the majority of experimental data of crack velocity versus stress intensity factor diagram. The rate theory of crack growth was applied for data of alumina ceramics samples in region I and making use of the values of the exponential function parameters the crack growth rate theory parameters were estimated.
This study Ajert to modify the chemical composition of milk fat cows and make it similar to the installation of milk fat mother through the addition of protein and soybean oil to be given Alkhltatnsp sensory protein that the best plan is the ratio of 1:1
Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show More