In this paper, we introduce a DCT based steganographic method for gray scale images. The embedding approach is designed to reach efficient tradeoff among the three conflicting goals; maximizing the amount of hidden message, minimizing distortion between the cover image and stego-image,and maximizing the robustness of embedding. The main idea of the method is to create a safe embedding area in the middle and high frequency region of the DCT domain using a magnitude modulation technique. The magnitude modulation is applied using uniform quantization with magnitude Adder/Subtractor modules. The conducted test results indicated that the proposed method satisfy high capacity, high preservation of perceptual and statistical properties of the stego-image and also it is robust, to some extents against several levels of JPEG compression.
This research aims to know the intellectual picture the displaced people formed about aid organizations and determine whether they were positive or negative, the researchers used survey tool as standard to study the society represented by displaced people living in Baghdad camps from Shiites, Sunnis, Shabak, Turkmen, Christians, and Ezidis.
The researcher reached to important results and the most important thing he found is that displaced people living in camps included in this survey hold a positive opinion about organizations working to meet their demands but they complain about the shortfall in the health care side.
The research also found that displaced people from (Shabak, Turkmen, and Ezidi) minorities see that internati
With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show MoreIn this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o
... Show MoreJPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show Moreتعد مجالات الصورة وعلاماتها الحركية حضوراً دلالياً للاتصال العلامي واتساعاً في الرابطة الجدلية ما بين الدوال ومداليها، التي تقوم بها الرؤية الاخراجية لإنتاج دلالات اخفائية تمتلك جوهرها الانتقالي عبر الافكار بوصفها معطيات العرض، ويسعى التشفير الصوري الى بث ثنائية المعنى داخل الحقول المتعددة للعرض المسرحي، ولفهم المعنى المنبثق من هذه التشفيرات البصرية، تولدت الحاجة لبحث تشكيل هذه التشفيرات وكيفية تح
... Show MoreMany image processing and machine learning applications require sufficient image feature selection and representation. This can be achieved by imitating human ability to process visual information. One such ability is that human eyes are much more sensitive to changes in the intensity (luminance) than the color information. In this paper, we present how to exploit luminance information, organized in a pyramid structure, to transfer properties between two images. Two applications are presented to demonstrate the results of using luminance channel in the similarity metric of two images. These are image generation; where a target image is to be generated from a source one, and image colorization; where color information is to be browsed from o
... Show More