Preferred Language
Articles
/
IYaKuoYBIXToZYALr7Rp
Effect of several patterns of floating stone columns on the bearing capacity and porewater pressure in saturated soft soil
...Show More Authors

One of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of 5.5 kPa and improved by several patterns of stone columns (single, two linear, triangular, square, and quadrilateral). The stone column has a length of 180 mm and a diameter of 30 mm. The material of the stone column is poorly graded sand has an angle of internal friction (48.5°) at a relative density of 65%. The results indicated a significant increase in the ultimate bearing capacity of soft soil when treated with floating stone columns despite the small ratio of area replacement and reducing the excess porewater pressure and settlement. Also, the ultimate bearing capacity of soil calculated from experimental work is compared with the corresponding values obtained from the proposed equations in the previous studies to evaluate the validity of using such equations.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Ocean Engineering
Stresses and pore water pressure induced by machine foundation on saturated sand
...Show More Authors

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm).

... Show More
View Publication
Crossref (20)
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
Influence of Stone Powder on the Mechanical Properties of Clayey Soil
...Show More Authors

In this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Effect of Swelling Soil on Load Carrying Capacity of a Single Pile
...Show More Authors

Expansive soils are recognized by their swelling potential upon wetting due to the existence of some clay minerals such as  montmorillonite. An effective solution was found to avoid the danger of such soils by using piles. A single pile embedded in an elasto-plastic expansive soil has been analyzed by using one of the available software which is ABAQUS to investigate the effect of applied loads on pile’s top and investigate the effect of swelling soils on load carrying capacity of the pile. The result shows that as the pile is axially loaded at its top, the axial force along the pile gradually changes from (tension) to (compression) and the pile tends to move downward. The applied load needed to initiate pile’s settlement depend

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
RELIABILITY ANALYSIS OF THE SEISMIC STABILITY OF EMBANKMENTS REINFORCED WITH STONE COLUMNS
...Show More Authors

Geotechnical engineers have always been concerned with the stabilization of slopes. For this purpose,
various methods such as retaining walls, piles, and geosynthetics may be used to increase the safety factor of slopes prone to failure. The application of stone columns may also be another potential alternative for slope stabilization. Such columns have normally been used for cohesive soil improvement. Most slope analysis and design is based on deterministic approach i.e a set of single valued design parameter are adopted and a set of single valued factor of safety (FOS) is determined. Usually the FOS is selected in view of the understanding and knowledge of the material parameters, the problem geometry, the method of analysis and the

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model
...Show More Authors

Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite ele

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 31 2022
Journal Name
Iraqi Journal Of Science
Synthesis and Characterization of Several New Copolymers Based on Maleimides Bearing 1, 3, 4-Oxadiazole Moiety
...Show More Authors

A series of new copolyimides containing pendant 1,3,4-oxadiazole moiety were synthesized via multisteps. In the first step five N-(5-substituted-1,3,4-oxadiazole-2-yl)maleamic acids were prepared via reaction of maleic anhydride with 2-amino-5-substituted-1,3,4-oxadiazoles. The obtained amic acids were dehydrated in the second step affording the corresponding N-(5-substituted-1,3,4-oxadiazole-2-yl) maleimides. In the third step the newly synthesized maleimides were introduced successfully in free radical copolymerization reaction with four vinylic monomers including acrylo nitrile, methacrylonitrile, methyl acrylate and methyl meth acrylate respectively producing twelve new copolymers having different physical properties which may serve

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 02 2014
Journal Name
Arab J Sci Eng
Modeling of Trichloroethylene Migration in Three-Dimensional Saturated Sandy Soil
...Show More Authors

Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Sep 15 2021
Journal Name
Geomechanics And Geoengineering
Effect of Deep Remediation and Improvement on Bearing Capacity and Settlement of Piled Raft Foundation Subjected to Static and Cyclic Vertical Loading
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Behavior of Partially Saturated Cohesive Soil under Strip Footing
...Show More Authors

In this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jun 02 2010
Journal Name
Journal Of Engineering
Bearing capacity of square footing on geogrid reinforced loose sand to resist eccentric load
...Show More Authors

This research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively