Changing oil-wet surfaces toward higher water wettability is of key importance in subsurface engineering applications. This includes petroleum recovery from fractured limestone reservoirs, which are typically mixed or oil-wet, resulting in poor productivity as conventional waterflooding techniques are inefficient. A wettability change toward more water-wet would significantly improve oil displacement efficiency, and thus productivity. Another area where such a wettability shift would be highly beneficial is carbon geo-sequestration, where compressed CO2 is pumped underground for storage. It has recently been identified that more water-wet formations can store more CO2. We thus examined how silica based nanofluids can induce such a wettability shift on oil-wet and mixed-wet calcite substrates. We found that silica nanoparticles have an ability to alter the wettability of such calcite surfaces. Nanoparticle concentration and brine salinity had a significant effect on the wettability alteration efficiency, and an optimum salinity was identified, analogous to that one found for surfactant formulations. Mechanistically, most nanoparticles irreversibly adhered to the oil-wet calcite surface (as substantiated by SEM–EDS and AFM measurements). We conclude that such nanofluid formulations can be very effective as enhanced hydrocarbon recovery agents and can potentially be used for improving the efficiency of CO2 geo-storage.
The rise of antibiotic-resistant bacteria necessitates the exploration of novel antimicrobial agents. Yttrium oxide nanoparticles (Y₂O₃) have shown potential due to their unique physicochemical properties and antibacterial activities against various pathogens. This study investigates the cytotoxic and antibacterial effects of Y₂O₃ nanoparticles against Serratia fonticuli and Citrobacter koseri, bacteria isolated from cholangitis patients. Bacterial strains were isolated from bile specimens and confirmed using standard microbiological techniques. The methods of X-ray diffraction (XRD), (SEM), and Frequency transform-infrared spectroscopic (FT-IR) were used to characterize YO₃ particles. Using a microdilution technique, the minimum
... Show MoreThe aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show MoreThe detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed
... Show MoreFar infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness in
... Show MoreA mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show MoreThis study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MoreThis study aimed to fabricate a curcumin@platinum nanohybrid (CUR@Pt NPs) through a green tea–based synthesis method and to evaluate its various functions, including antioxidant, burn-healing, and selective anticancer activities against PANC-1 pancreatic cancer cells. Green tea polyphenols served as natural reducing and stabilizing agents, facilitating an eco-friendly, single-step manufacturing process. Physicochemical characterization confirmed successful nanohybrid formation: a CUR@Pt band appeared at 457 nm in the UV–Vis spectrum, XRD displayed crystalline platinum peaks at 2θ = 46.9°, and 67.0°, matching the (200), and (220) planes, respectively, and TEM images showed well-dispersed spherical nanoparticles with an average siz
... Show MoreA simple technique is proposed in this paper for estimating the coefficient of permeability of an unsaturated soil based on physical properties of soils that include grain size analysis, degree of saturation or water content, and porosity of the soil. The proposed method requires the soil-water characteristic curve for the prediction of the coefficient of permeability as most of the conventional methods. A procedure is proposed to define the hydraulic conductivity function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision), after indentifying the basic properties of the soil such as Attereberg limits, specific gravity, void ratio, porosity, d
... Show MoreClothes are considered a means of aesthetic and artistic expression that help to hide the flaws of the body and highlight its merits , it has importance in people's lives as it reflects the individual's idea of himself and his personality. Whereas the appreciation in clothing is a reflection of a person's sense of artistic components and the application of this sense to the clothes of his choice. Regarding the differences in clothing tastes by the university students according to the following variables (gender, specialization, stage of study, age, monthly income), the current research is considered quantitative descriptive research that is concerned with studying a phenomenon that exists in reality, measuring it
... Show More