Changing oil-wet surfaces toward higher water wettability is of key importance in subsurface engineering applications. This includes petroleum recovery from fractured limestone reservoirs, which are typically mixed or oil-wet, resulting in poor productivity as conventional waterflooding techniques are inefficient. A wettability change toward more water-wet would significantly improve oil displacement efficiency, and thus productivity. Another area where such a wettability shift would be highly beneficial is carbon geo-sequestration, where compressed CO2 is pumped underground for storage. It has recently been identified that more water-wet formations can store more CO2. We thus examined how silica based nanofluids can induce such a wettability shift on oil-wet and mixed-wet calcite substrates. We found that silica nanoparticles have an ability to alter the wettability of such calcite surfaces. Nanoparticle concentration and brine salinity had a significant effect on the wettability alteration efficiency, and an optimum salinity was identified, analogous to that one found for surfactant formulations. Mechanistically, most nanoparticles irreversibly adhered to the oil-wet calcite surface (as substantiated by SEM–EDS and AFM measurements). We conclude that such nanofluid formulations can be very effective as enhanced hydrocarbon recovery agents and can potentially be used for improving the efficiency of CO2 geo-storage.
We report here the observation of 16 µm superradiance laser action generated from optical pumping of CF4 gas molecules (which is cooled to 140 Kº by a boil-off liquid-N2) by a TEA-CO2 laser 9R12 line. Output laser pulses of 7 mJ and 200 ns have been obtained.
The dispersion of supported Pt and Pt–Ir reforming catalysts have been studied, after treatment with oxidative and reducing atmosphere. Methylcyclohexane dehydrogenation reaction in the absence of hydrogen was used as a test reaction. An attempt was made to relate the behavior of the catalysts upon subject to reaction, to the dispersion of the same type of catalysts upon treatment with similar atmosphere and temperatures which appeared in literature. The total conversion of reaction can be explained by a change in metal dispersion. Thus, methylcyclohexane dehydrogenation reaction appears to be a really “structure sensitive” reaction.
The toluene yield increases as the oxidation temperature i
... Show MoreThe present paper focuses on the study of some characteristics of
comets ions by photometry method which represent by CCD camera
which it provide seeing these images in a graded light. From 0-255
when Zero (low a light intensity) and 255 (highlight intensity). These
differences of photonic intensity can be giving us a curve which
appear from any line of this image.
From these equations the focus is concentrating on determine the
temperature distribution, velocity distribution, and intensity number
distribution which is give number of particles per unit volume.
The results explained the interaction near the cometary nucleus
which is mainly affected by the new ions added to the density of the
solar wind, th
In this work, we have investigated optical properties of the thermally evaporation PbS/CdS thin films. The optical constant such as (refractive index n, dielectric constant εi,r and Extinction coefficient κ) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of PbS/CdS films is calculate from (αhυ)1/2 vs. photon energy curve.
The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51) cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP) according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c); (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c), while the soil samples were dehydrated for one day
... Show MoreThis research presents a study for precipitating phosphorus (as phosphate ion) from simulated wastewater (5ppm initial concentration of phosphorus) using calcium hydroxide Ca(OH)2 solution. The removal of phosphorus by Ca (OH)2 solution is expected to be very effective since the chemical reaction is of acid-base type but Ca(OH)2 forms complex compound with phosphate ions called. Hydroxyapatite Ca5 (PO4)3OH. hydroxyapatite is slightly soluble in water. This research was directed towards sustainable elements as phosphorus. Kinetics of the dissolution reaction of hydroxyapatite was investigated to find the best factors to recover phosphorus. The effect of con
... Show MoreThe alteration in the hydrological regime in Iraq and the anthropogenic increasing effect on water quality of a lotic ecosystems needs to continuous monitoring. This work is done to assess the water quality of Tigris River within Baghdad City. Five sites were selected along the river and ten physicochemical parameters and Overall Index of Pollution (OIP) were applied to assess the water quality for the period between November 2020 and May 2021, the studied period were divided into dry and wet seasons. These parameters were water temperature, pH, dissolved oxygen (DO), biological oxygen demand (BOD), total hardness, alkalinity, turbidity, total phosphorus, total nitrogen, electrical co
Investigation of the adsorption of Chromium (VI) on Fe3O4 is carried out using batch scale experiments according to statistical design using a software program minitab17 (Box-Behnken design). Experiments were carried out as per Box-Behnken design with four input parameters such as pH (2-8), initial concentration (50–150mg/L), adsorbent dosage (0.05–0.3 g) and time of adsorption (10–60min). The better conditions were showed at pH: 2; contact time: 60 min; chromium concentration: 50 mg/L and magnetite dosage: 0.3 g for maximum Chromium (VI) removal of (98.95%) with an error of 1.08%. The three models (Freundlich, Langmuir, and Temkin) were fitted to experimental data, Langmuir isotherm has bette
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show More