RA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Fluoroscopic images are a field of medical images that depends on the quality of image for correct diagnosis; the main trouble is the de-nosing and how to keep the poise between degradation of noisy image, from one side, and edge and fine details preservation, from the other side, especially when fluoroscopic images contain black and white type noise with high density. The previous filters could usually handle low/medium black and white type noise densities, that expense edge, =fine details preservation and fail with high density of noise that corrupts the images. Therefore, this paper proposed a new Multi-Line algorithm that deals with high-corrupted image with high density of black and white type noise. The experiments achieved i
... Show MoreNearly, in the middle of 1970s the split-brain theory became the only theory that explains human creativity used in all fine art and art education schools. In fact, this theory- which appeared for first time in the middle of 1940s – faced many radical changes including its concepts and structures, and these changes affected both teaching art and art criticism. To update people awareness within art field of study, this paper reviews the split-brain theory and its relationship with teaching art from its appearance to its decay in 2013 and after.
Deep Learning Techniques For Skull Stripping of Brain MR Images
Fractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
In every system of security, to keep important data confidential, we need a high degree of protection. Steganography can be defined as a way of sending confidential texts through a secure medium of communications as well as protecting the information during the process of transmission. Steganography is a technology that is used to protect users' security and privacy. Communication is majorly achieved using a network through SMS, e-mail, and so on. The presented work suggested a technology of text hiding for protecting secret texts with Unicode characters. The similarities of glyphs provided invisibility and increased the hiding capacity. In conclusion, the proposed method succeeded in securing confidential data and achieving high p
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor
... Show MoreLandsat7 of Enhanced thematic mapper plus (ETM+) was launched on April 15, 1999. Four years later, images start degrading due to the scan line corrector (SLC). SLC is a malfunction that results in pixel gaps in images captured by the sensor of Landsat7. The pixel gap regions extend from about one pixel near the image center and reach up to about 14 pixels in width near the image edge. The shape of this loss is like a zigzag line; however, there are different studies about repairing these gaps. The challenge of all studies depends on retrieving inhomogeneous areas because the homogenous area can be retrieved quickly depending on the surrounding area. This research focuses on filling these gaps by utilizing pixels around them
... Show More