Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.
Response of cross-ply plates subjected to transient load is obtained using five variables refined plate theory, and four variables plate theory. Equations of motion are derived through the principleof virtual work. Navier series used for simply supported laminated plates. The results of this work are presented for different parameters, such as the ply number, thickness, and modulus ratio with mechanical load (sinusoidal and step pulses), which are compared with those obtained using high-order shear plate theory. Five variables of refined plate theory give results that are considerably different from the four variables of refined plate theory and higher-order theory. The obtained results from the four variables theory have the same behavior
... Show MoreThe AlAdhaim Dam is located 133 kilometers northeast of Baghdad. It is a multipurpose dam and joints the Iraqi dam system in 2000. It has a storage capacity of 1.5 billion m3. The dam has an ogee spillway with a length of 562 m, a crest level of 131.5 m.a.m.s.l. and a maximum discharge capacity of 1150 m3/s at its maximum storage height of 143 m.a.m.s.l. This research aimed to investigate the hydrodynamics performance of the spillway and the stilling basin of AlAdhiam Dam by using numerical simulation models under gated situations. It was suggested to modify the dam capacity by increasing the dam's storage capacity by installing gates on the crest of the dam spillway. The FLUENT program was used to
... Show Morethe use of diffrent concectration of Na and Mg ions were shown to causes in increase in the bindings at oncentration
Shiranish has been studied at Hijran section near Erbil city, NE Iraq. Fifty two thin-sections were prepared to study them under polarized microscope, to determine the petrographic component, organic content and digenetic processes. Rock units subdivided into four rock beds, as follows: dolostone, foraminiferal biomicrite, poorly washed biomicrite and micrite. Vertical succession of Shiranish Formation refers to off-shore quite marine environment.
Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by de
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show MoreThis paper seeks to study the link between the fundamentalist evidence based on the observance of governance and interests and the ranks of the three legitimate purposes (necessary, need and detailed). The researcher followed the descriptive-analytical approach. The study reached important results, including that the measurement relates to the three ranks, but predominantly attached to measure the meaning of the need and the need, and the measurement of the semi-formal and semi-predominance improvement. Reclamation is considered by the majority of scholars to be authentic if it is related to the necessity and the need, and that it is not acceptable to improve only by a witness who recommends it. The excuses relate to Hajji and Tahini, no
... Show MoreIn this research, the effect of changing the flood level of Al-Shuwaija marsh was studied using the geographic information systems, specifically the QGIS program, and the STRM digital elevation model with a spatial analysis accuracy of 28 meters, was used to study the marsh. The hydraulic factors that characterize the marsh and affecting on the flooding such as the ranks of the water channels feeding the marsh and the degree of slope and flat areas in it are studied. The area of immersion water, the mean depth, and the accumulated water volume are calculated for each immersion level, thereby, this study finds the safe immersion level for this marsh was determined.