Preferred Language
Articles
/
IRems44BVTCNdQwCVldP
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.

Scopus Crossref
View Publication
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Naturally occurring radioactive materials and related hazard indices in Ahdeb oil field
...Show More Authors

In this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Evaluation of Acid and Hydraulic Fracturing Treatment in Halfaya Oil Field-Sadi Formation
...Show More Authors

Sadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.

Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.

   In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.

   The reservoir damage severity has been taken as "Shallow–Medium– Sever

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Analysis of Fatty Acid Composition in the Seed and flower oil of Syrian Ligustrun Lucidum and olive oil
...Show More Authors

The fatty acid composition in the seed and flower of Ligustrun lucidum and olive oil was studied by Gas Chromatography. Results showed that the main components of seed oil were Palmitic (C16:0) 5,893% ,Palmitolic acid (C16:1)0,398%, Steaeic (C18:0)2,911% ,Oleic (C18:1)74,984%,Linoleic (C18:2) 12,959%,and Linolenic (C18:3) 0,997%. The proportion of unsaturated fatty acid was above 89,338%, so the seed oil of L. lucidum ait belonged to unsaturated oil which possessed promising application. The components of flower oil were Palmitic (C16:0) 65,674% ,Palmitolic acid (C16:1)6,516%, Steaeic (C18:0)2,641% ,Oleic (C18:1)14,707%,Linoleic (C18:2) 3,113%,and Linolenic (C18:3) 2,70%. The proportion of unsaturated fatty acid and saturated fatty acid wa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Mediator Role of Workplace Spirituality in The Relationship Between Psychological Capital and Entrepreneurial Behavior: Field Research in the center of the Iraqi Ministry of Oil
...Show More Authors

Abstract

      The research aims to identify the mediator role of  workplace spirituality in the  relationship between psychological capital and entrepreneurial  behavior: field research to a sample opinions from employees at the center of the Iraqi ministry of Oil . The importance of the current research emerged from paucity of studies that have attempted to identify and know the nature of the relationship between the variables as well as trying to find the current address and realistic problem directly affects the performance of employees in the Iraqi oil sector.

 In order to achieve the goal of research the use of the analytical method (quantitative)

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Oct 13 2019
Journal Name
Spe Kuwait Oil & Gas Show And Conference
Optimization of Fracture Parameters for Hydraulic Fractured Horizontal Well in a Heterogeneous Tight Reservoir: An Equivalent Homogeneous Modelling Approach
...Show More Authors
Abstract<p>Building numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr</p> ... Show More
View Publication
Scopus (24)
Crossref (15)
Scopus Crossref
Publication Date
Fri Oct 22 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
4D Finite element modeling of stress distribution in depleted reservoir of south Iraq oilfield
...Show More Authors
Abstract<p>The harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are</p> ... Show More
View Publication
Scopus (15)
Crossref (12)
Scopus Clarivate Crossref