Preferred Language
Articles
/
IRems44BVTCNdQwCVldP
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.

Scopus Crossref
View Publication
Publication Date
Sat Jul 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Monitoring the land surface temperature for Al-Ahdab oil field in 2022 using R.S and GIS techniques
...Show More Authors
Abstract<p>The skin temperature of the earth’s surface is referred to as the Land Surface Temperature (LST). the availability of long-term and high-quality temperature records is important for various uses that affect people’s lives and livelihoods. Much valid information was provided to this research from remote sensing technology by using Landsat 8 (L8) imagery to estimate LST for Al-Ahdab oil field in Wasit city in Iraq. The aim of this research is to analyze LST variations based on Landsat 8 data for 2022 (January, April, July, and October). ArcMap 10.8 was used to estimate LST results. The results values ranged from (about 10 C in January to about 46 C in July). The results show that LS</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Oil Sector in Iraq (Reality and Prospects) Economic Analysis
...Show More Authors

   The oil sector in Iraq suffered from several difficulties led to the decline and reduction of oil production and the deterioration of refineries and transport pipeline status in addition to the weakness of the technology side and the prevalence of financial and administrative corruption besides the high costs of rehabilitation of the oil sector and also administrative and institutional problems still ongoing. 

 In spite of Iraq's possession of vast oil wealth allows him to play an important role in the international energy market، he is still under the level. The production of oil doesn'<

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Cluster Analysis of Biochemical Markers as Predictor of COVID-19 Severity
...Show More Authors

Numerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus.  The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
FACIES ANALYSIS AND NEW DISCOVERY OF A MASTODONT FROM INJANA FORMATION (LATE MIOCENE) NEAR THARTHAR LAKE- MIDDLE OF IRAQ
...Show More Authors

    The study area comprises Injana Formation (Late Miocene), exposed on the hills nearby of Tharthar Lake and about 120 km north of Baghdad city. This study depends on sedimentologic and facies analysis to recognize paleoenvironment and recognize the kinds of vertebrate bone fossils during Late Miocene. Sedimentologic and facies analysis showed many sedimentary facies: facies (Se) of scoured erosional surface, facies of (Sp) cross- bedded sandstones, facies (Fs) of fine sandstone facies, facies of (Fc) claystone, and facies of (C) calcareous clay. Facies analysis referred to the sub environments which are: point bar, over bank and floodplain in addition to fining upward cycles of deposition, which refers to meandering flu

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Bayes Analysis for the Scale Parameter of Gompertz Distribution
...Show More Authors

In this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.

The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Evaluation of Acid and Hydraulic Fracturing Treatment in Halfaya Oil Field-Sadi Formation
...Show More Authors

Sadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.

Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.

   In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.

   The reservoir damage severity has been taken as "Shallow–Medium– Sever

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Naturally occurring radioactive materials and related hazard indices in Ahdeb oil field
...Show More Authors

In this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref