Steady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤ ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main considered parameters. The presented results show the effect of these parameters on the heat transfer and fluid flow characteristics. These results include streamlines, isotherm patterns, and local and average Nusselt number for different values of the governing parameters. It is found that either increasing the Rayleigh number and the ratio of conjugate wall thickness to its height (d/H) or decreasing the ratio of heat source width to bottom wall (l/L), the average Nusselt number is increased. Also, it was observed that the average Nusselt number does not change substantially with inclination angle.
RM Abbas, AA Abdulhameed, AI Salahaldin, International Conference on Geotechnical Engineering, 2010
In this paper the definition of fuzzy anti-normed linear spaces and its basic properties are used to prove some properties of a finite dimensional fuzzy anti-normed linear space.
This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.
The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t
... Show MoreThe Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
Background: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MoreAs the reservoir conditions are in continuous changing during its life, well production rateand its performance will change and it needs to re-model according to the current situationsand to keep the production rate as high as possible.Well productivity is affected by changing in reservoir pressure, water cut, tubing size andwellhead pressure. For electrical submersible pump (ESP), it will also affected by numberof stages and operating frequency.In general, the production rate increases when reservoir pressure increases and/or water cutdecreases. Also the flow rate increase when tubing size increases and/or wellhead pressuredecreases. For ESP well, production rate increases when number of stages is increasedand/or pump frequency is
... Show MoreThis paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreLocal food samples investigated for the presence of pathogenic bacteria. Hash meat sample was used to isolate Escherichia coli and chicken meat (poultry) was used to isolate Salmonella typhi. Biochemical tests and API20E system used in order to identify these isolates. Two natural vinegar samples (dates & apple cider) were used in order to study its antibacterial activity against the two tested bacteria. Disc diffusion method was used, the results showed that two vinegar samples have antibacterial activity against the two tested bacteria. Date vinegar showed inhibition zone 19mm against E. coli & 9mm against S. typhi, while Apple cider vinegar showed diameter of inhibi
... Show MoreThe cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-
... Show More