Steady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤ ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main considered parameters. The presented results show the effect of these parameters on the heat transfer and fluid flow characteristics. These results include streamlines, isotherm patterns, and local and average Nusselt number for different values of the governing parameters. It is found that either increasing the Rayleigh number and the ratio of conjugate wall thickness to its height (d/H) or decreasing the ratio of heat source width to bottom wall (l/L), the average Nusselt number is increased. Also, it was observed that the average Nusselt number does not change substantially with inclination angle.
This work includes a detailed description of the Leucostoma nigricorpuris sp. nov. from
Iraq. Locality, host plants and data of collection were given.
Coronavirus: (COVID-19) is a recently discovered viral disease caused by a new strain of coronavirus.
The majority of patients with corona-virus infections will have a mild-moderate respiratory disease that recovers without special care. Most often, the elderly, and others with chronic medical conditions such as asthma, coronary disease, respiratory illness, and malignancy are seriously ill.
COVID-19 is spread mostly by salivary droplets or nasal secretions when an infected person coughs or sneezes.
COVID-19 causes severe acute respiratory illness (SARS-COV-2). The first incidence was recorded in Wuhan, China, in 2019. Since then it spreads leading to a pandemic.
... Show MoreIntroduction: Methadone hydrochloride (MDN) is an effective pharmacological substitution treatment for opioids dependence, adopted in different countries as methadone maintenance treatment (MMT) programmes. However, MDN can exacerbate the addiction problem if it is abused and injected intravenously, and the frequent visits to the MMT centres can reduce patient compliance. The overall aim of this study is to develop a novel extended-release capsule of MDN using the sol-gel silica (SGS) technique that has the potential to counteract medication-tampering techniques and associated health risks and reduce the frequent visits to MMT centres. Methods: For MDN recrystallisation, a closed container method (CCM) and hot-stage method (HSM) were conduc
... Show MoreThe aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of
... Show MoreMany approaches have been developed over time to counter the bioavailability limitations of poorly soluble drugs. With advances in nanotechnology in recent decades, this issue has been approached through the formulation of drugs as nanocrystals. Nanocrystals consist of pure drug(s) and a minimum of surface active agent(s) required for stabilization. They are carrier-free submicron colloidal drug delivery systems with a mean particle size typically in the range of 200 - 500 nm. By reducing particle size to nanoscale, the surface area available for dissolution is increased, and thus bioavailability is enhanced. Drug nanocrystals constitute a versatile formulation approach to enhance the pharmacokinetic and pharmacodynamic properties of poorly
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreThis work presents a simple method for determination of the neutron reflection coefficient (n) as a function of different neutron reflector materials.A laboratory neutron source (Am-Be) with activity of 16 ci is employed with a (BF3) neutron detector. Am-BeThree types of reflector materials are used as samples, the thickness of each sample is (5cm).It is found that( ?7) is: -For polyethlyene = 0.818
The heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed
... Show More