Purpose: To validate a UV-visible spectrophotometric technique for evaluating niclosamide (NIC) concentration in different media across various values of pH. Methods: NIC was investigated using a UV-visible spectrophotometer in acidic buffer solution (ABS) of pH 1.2, deionized water (DW), and phosphate buffer solution (PBS), pH 7.4. The characterization of NIC was done with differential scanning calorimeter (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The UV analysis was validated for accuracy, precision, linearity, and robustness. Results: The DSC spectra showed a single endothermic peak at 228.43 °C (corresponding to the melting point of NIC), while XRD and FTIR analysis confirmed the identity, crystallinity and purity of NIC. In all media, the measured concentration of NIC was within ± 5 % of the actual value, which confirmed accuracy. The percentage relative standard deviation values were < 1 %, reflecting the precision of the method. The range of concentration measured was between 2 and 24 μg/mL, and all coefficient of determination (R2) values were > 0.99, indicating the linearity of the established analytical method. The limit of detection (LOD) and limit of quantification (LOQ) values were 0.122 and 0.407 μg/mL in ethanol, 0.530 and 1.766 μg/mL in ABS (pH 1.2), 0.224 and 0.747 μg/mL in DW, and 0.798 and 2.662 μg/mL in PBS, pH 7.4. The robustness was confirmed as the measured concentration under slight changes in temperatures and wavelengths were insignificant (p > 0.05). Conclusion: Based on the results above, the UV-visible spectrophotometric method under investigation was validated to be accurate, precise, linear, and robust in all the different media for the determination of NIC.
Cefixime is an antibiotic useful for treating a variety ofmicroorganism infections. In the present work, tworapid, specific, inexpensive and nontoxic methods wereproposed for cefixime determination. Area under curvespectrophotometric and HPLC methods were depictedfor the micro quantification of Cefixime in highly pureand local market formulation. The area under curve(first technique) used in calculation of the cefiximepeak using a UV-visible spectrophotometer.The HPLC (2nd technique) was depended on thepurification of Cefixime by a C18 separating column250mm (length of column) × 4.6 mm (diameter)andusing methanol 50% (organic modifier) and deionizedwater 50% as a mobile phase. The isocratic flow withrate of 1 mL/min was applied, the temper
... Show MoreExisting leachate models over–or underestimates leachate generation by up to three orders of magnitude. Practical experiments show that channeled flow in waste leads to rapid discharge of large leachate volumes and heterogeneous moisture distribution. In order to more accurately predict leachate generation, leachate models must be improved. To predict moisture movement through waste, the two–domain PREFLO, are tested. Experimental waste and leachate flow values are compared with model predictions. When calibrated with experimental parameters, the PREFLO provides estimates of breakthrough time. In the short term, field capacity has to be reduced to 0.12 and effective storage and hydraulic conductivity of the waste must be increased to
... Show MoreAbstract. In this scientific work, we investigate the problem of the practical necessity of achieving the adequacy of translation activities with active translation from Russian into Arabic in various fields of translation. Based on the material of the latest suffix vocabulary, a serious attempt is made to clarify and specify the rules for the development of translator's intuition when translating from Russian into Arabic and vice versa. Based on the material collected by the latest suffix vocabulary, we try to make an attempt to reveal the role of suffix word creation in highlighting the general rules for achieving translation equivalence. The paper examines the process of creating words in multi-family languages, the difference between th
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreA New Spectrophotometric Methods are improved for determination Metronidazole (MTZ) and Metronidazolebenzoate (MTZB) depending on1STand 2nd derivative spectrum of the two drugs by using ethanol as a solvent. Many techniques were proportionated with concentration (peak high to base line, peak to peak and peak area). The linearity of the methodsranged between(1-25µg.ml-1) is obtained. The results were precise and accurate throw RSD% were between (0.041-0.751%) and (0.0331-0.452%), Rec% values between (97.78, 101.87%) and (98.033-102.39%) while the LOD between (0.051-0.231 µg.ml-1) and (0.074-1.04 µg.ml-1) and LOQ between (0.170-0.770µg.ml-1) and (0.074-0.313 µg.ml-1) of (MTZ) and of (MTZB) respectively. These Methods were successfully ap
... Show More
Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi |