Preferred Language
Articles
/
IRdWlY4BVTCNdQwCAFXz
Using the artificial TABU algorithm to estimate the semi-parametric regression function with measurement errors
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.

Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending

Publication Date
Fri Apr 13 2012
Journal Name
Kut Journal For Economic And Administrative Sciences
Using Different Methods to Estimate the Parameters of Probability Death Density Function with Application
...Show More Authors

In this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.

Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
The use of the genetic algorithm to estimate the parameters function of the hypoexponential distribution by simulation
...Show More Authors

In this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
About Semi-parametric Methodology for Fuzzy Quantile Regression Model Estimation: A Review
...Show More Authors

In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce

Paper Type: Review article.

another suggestion based on artificial neural networks.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Dynamic algorithm (DRBLTS) and potentially weighted (WBP) to estimate hippocampal regression parameters using a techniqueBootstrap (comparative study)
...Show More Authors

Bootstrap is one of an important re-sampling technique which has given the attention of  researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such  Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2012
Journal Name
Ibn Al-haytham Journal For Pure And Applied Science
Using Restricted Least Squares Method to Estimate and Analyze the Cobb-Douglas Production Function with Applicatio
...Show More Authors

Publication Date
Mon May 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Restricted Least Squares Method to Estimate and Analyze the Cobb-Douglas Production Function with Application
...Show More Authors

  In this paper, the restricted least squares method is employed to estimate the parameters of the Cobb-Douglas production function and then analyze and interprete the results obtained.         A practical application is performed on the state company for leather industries in Iraq for the period (1990-2010).         The statistical program SPSS is used to perform the required calculations.

View Publication Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Finding Best Clustering For Big Networks with Minimum Objective Function by Using Probabilistic Tabu Search
...Show More Authors

     Fuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Parametric and Non –parametric Methods To Estimate Median Effective Dose ( ED5
...Show More Authors

            In this paper the research represents an attempt of expansion in using the parametric and non-parametric estimators to estimate the median effective dose ( ED50 ) in the quintal bioassay and comparing between  these methods . We have Chosen three estimators for Comparison. The first estimator is
( Spearman-Karber )  and the second estimator is ( Moving Average ) and The Third estimator  is ( Extreme Effective Dose ) .
We used a minimize Chi-square as a parametric method. We made a Comparison for these estimators by calculating the mean square error of (ED50) for each one of them and comparing it with the optimal the mean square

... Show More
View Publication Preview PDF
Crossref