The set of all (n×n) non-singular matrices over the field F this set forms a group under the operation of matrix multiplication. This group is called the general linear group of dimension over the field F, denoted by . The determinant of these matrices is a homomorphism from into F* and the kernel of this homomorphism was the special linear group and denoted by Thus is the subgroup of which contains all matrices of determinant one.
The rational valued characters of the rational representations written as a linear combination of the induced characters for the groups discuss in this paper and find the Artin indicator for this group after study the rational valued characters of the rational representations and the induce
... Show MoreThe main object of this paper is to study the representations of monomial groups and characters technique for representations of monomial groups. We refer to monomial groups by M-groups. Moreover we investigate the relation of monomial groups and solvable groups. Many applications have been given the symbol G e.g. group of order 297 is an M-group and solvable. For any group G, the factor group G/G? (G? is the derived subgroup of G) is an M-group in particular if G = Sn, SL(4,R).
In this paper, we study the effect of group homomorphism on the chain of level subgroups of fuzzy groups. We prove a necessary and sufficient conditions under which the chains of level subgroups of homomorphic images of an a arbitrary fuzzy group can be obtained from that of the fuzzy groups . Also, we find the chains of level subgroups of homomorphic images and pre-images of arbitrary fuzzy groups