It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological properties of water-based drilling fluid using other simple measurable properties. While mud density, marsh funnel, and solid% are key input parameters in this study, the output models are plastic viscosity, yield point, apparent viscosity and gel strength. The prediction methods have been applied on datasets taken from the final reports of two wells drilled in the Ahdeb oil field, eastern Iraq. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error have been used in this study. The current results support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological mud properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties using simple and quick equipment such as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show MoreAbstract
Multivariate GARCH Models take several forms , the most important DCC dynamic conditional correlation, and CCC constant conditional correlation , The Purpose of this research is the Comparison for both Models.Using three financial time series which is a series of daily Iraqi dinar exchange rate indollar, Global daily Oil price in dollar and Global daily gold price in dollarfor the period from 01/01/2014 till 01/01/2016, Where it has been transferred to the three time series returns to get the Stationarity, some tests were conducted including Ljung-Box , JarqueBera , Multivariate ARCH to Returns Series and Residuals Series for both models In Comparison
... Show MoreKnowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani
... Show MoreMagneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef
... Show MoreIn this study miconazole nitrate was formulated as topically applied emulgel; different formulas were prepared using sodium carboxymethylcellulose (SCMC) and carboxypolymethylene (carbomer 941) as gelling agents. The influence of type of gelling agent and concentration of both oil phase and emulsifying agent on drug release was studied and compared with commercially available miconazole nitrate cream (Mecozalen®). The results of in vitro release showed that SCMC emulgel bases gave better release than carbomer 941 bases and the release of drug increase from both bases as a function of increasing the concentration of emulisifying agent. The oil phase had retardation effect when
... Show MoreHard water does not pose a threat to human health but may cause precipitation of soap or results stone in the boilers. These reactions are caused by the high concentrations of Ca and Mg. In the industry they are undesirable because of higher fuel consumption for industrial use .Electromagnetic polarization water treatment is a method which can be used for increasing the precipitation of Ca 2+ and CO3 2- ions in hard water to form CaCO3 which leads to decrease the water hardness is research has been conducted by changing the number of coil turns and voltage of the system. The spectroscopy electron microscope was used for imaging the produced crystals. Results of the investigation indicated that
... Show More