It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological properties of water-based drilling fluid using other simple measurable properties. While mud density, marsh funnel, and solid% are key input parameters in this study, the output models are plastic viscosity, yield point, apparent viscosity and gel strength. The prediction methods have been applied on datasets taken from the final reports of two wells drilled in the Ahdeb oil field, eastern Iraq. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error have been used in this study. The current results support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological mud properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties using simple and quick equipment such as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.
Background: Debonding and fracture of artificial teeth from denture bases are common clinical problem, bonding of artificial teeth to heat cure acrylic and high impact heat cure acrylic denture base materials with autoclave processing method is not well known. The aim of this study was to evaluate the effect of autoclave processing method on shear bond of artificial teeth to heat cure denture base material and high impact heat cure denture base material. Materials and methods: Heat polymerized (Vertex) and high impact acrylic (Vertex) acrylic resins were used. Teeth were processed to each of the denture base materials after the application of different surface treatments. The sample (which consist of artificial tooth attached to the dentur
... Show MoreThe current research aims to identify 1) the differences of emotional stability development level according to the variable of age; and 2) the differences of emotional stability development level according to the variable of gender (male, female). This study employed a descriptive approach, whereby a total of 165 primary and secondary school student was randomly selected from the directorate of AL -rusafa side (1st rusafa) of Baghdad province to constitute the sample of the study. The questionnaire was created based on the previous testes and studies that are relevant to emotional stability, and all its psychometrics features were examined. The researcher analyzed the data using SPSS statistic
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreAchieving a connection between sustainability processes and environmental protection, or what is known as sustainable development, requires paying more attention to environmental and sustainability issues for various projects and their effects on environmental problems. It involves determining the most appropriate ways to deal with them within pillars of sustainability (environmental, social, economic, and natural resources. As cement is a fundamental component of industrial services and construction in cities, it has a direct and significant interaction with the development process, making it one of the most important industries in Iraq. Because of the clinker particles and combustio
This study aims to identify how the Zakat Fund contributes to financing entrepreneurial projects; and the role that these projects play in achieving economic and social development, despite the importance that contracting projects have in most countries as the main engine of growth; however, they still face many challenges that In the forefront of which is the challenge of obtaining financing; in this regard, it is possible to resort to the use of Zakat funds in the Islamic economy as it is a funding source that is closely proportional to the characteristics and goals of entrepreneurial projects in achieving development;
 
... Show MoreHot-wire cutting is one of the important, non-traditional thermomechanical way to cut polymer, usually expanded foam and extruded foam, in low volume manufacturing. The study and analysis of Hot-Wire cutting parameters play an important role to enhance the quality and accuracy of the process and products. The effects on the surface have been investigated by using experimental tests designed according to the Taguchi orthogonal array (OA). In this study, four parameters with five levels for each parameter have been used: [temperature of wire (A) (100, 120, 130, 150, 160) °C], [diameter of wire (B) (0.3,0.4,0.5,0.7,0.8) mm], [velocity of cutting (C) (200, 300,400,500,600) mm/min], [and density of foam (D) (0.01,0.0
... Show MoreStatistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using Box-Jenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2).
Statistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using BoxJenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2)